Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Adaptations and Constraints in a Group of Keystone Pollinators: Implications for a Changing World.

EPA Grant Number: F6F21398
Title: Adaptations and Constraints in a Group of Keystone Pollinators: Implications for a Changing World.
Investigators: Eaton-Mordas, Alexander
Institution: University of Arizona
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2006 through September 1, 2009
Project Amount: $108,674
RFA: STAR Graduate Fellowships (2006) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Ecological Indicators/Assessment/Restoration , Fellowship - Terrestrial Ecology

Objective:

Recent advances in our understanding of how animals perceive and respond to their environment have significantly enhanced our understanding of the adaptive nature of plant-pollinator mutualisms. Additionally, growing interest in understanding the stability of mutualistic interactions on both ecological and evolutionary time scales offers to provide an effective basis for assessing targets for conservation. Through the study of a trait that may influence range-size and floral visitation patterns in a group of keystone Neotropical pollinators, this project aims to link these two fields and provide a cognitive approach to our understanding of the stability of mutualistic interactions. The ultimate goal is to produce testable predictions of the long-term stability of mutualisms in light of the current trends of climate change, deforestation and habitat alteration.

Approach:

In the Neotropics, euglossine bees (Hymenoptera: Apidae) are arguably the most important biotic agents of pollination. Male euglossine bees exhibit the unique behavior of visiting flowering plants for the purpose of collecting volatile floral chemicals. These chemicals are collected and stored in enlarged and highly modified hind tibiae. It is now known that these odors play a role in the mating behavior of male bees. However, whether this odor signal contains information in a male-male context, male-female context, or both, remains to be seen. By using a combination of behavioral study, sensory physiology, population genetics and analytical chemistry, I aim to assess the ultimate addressee of this signal, the role that it plays in the mating biology of these bees, and how this signal and the preferences for it vary through space and time.

Expected Results:

By examining the spatial and temporal patterns of odor recognition, collection and preference, and by comparing them to population genetic structure and assessing levels of gene flow, I expect to distinguish between the roles of behavioral plasticity, rapid adaptive evolution, drift and genetic constraints on this novel behavior that influences floral visitation rates and preferences of this important pollinator group. Ultimately, this work will enable the development of targeted conservation efforts for this important group of Neotropical pollinators, and may provide a more realistic theoretical basis for the study of the evolutionary and ecological stability of mutualistic plant-pollinator interactions.

Supplemental Keywords:

Orchid Bees, Adaptive Evolution, Cognitive Ecology, Sensory Physiology, Population Genetics, Evolutionary Conservation Biology, Plant-Animal Interactions, Neotropics,, RFA, Scientific Discipline, Air, Ecosystem Protection/Environmental Exposure & Risk, climate change, Air Pollution Effects, Monitoring/Modeling, Habitat, Environmental Monitoring, Biology, Atmosphere, adaptive genetic variation, habitat dynamics, biodiversity, plant insect interactions, pollination, habitat fragmentation, conservation biology, deforestation, population genetics

Progress and Final Reports:

  • 2007
  • 2008
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.