Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Spatial Exposure Models for Assessing the Relation Between Air Pollution and Childhood Asthma at the Intra-urban Scale

EPA Grant Number: R831845
Title: Spatial Exposure Models for Assessing the Relation Between Air Pollution and Childhood Asthma at the Intra-urban Scale
Investigators: Jerrett, Michael , Thomas, Duncan C. , Winer, Arthur M. , Lurmann, Fred , Molitor, John , Wu, Jun , Kuenzli, Nino , Gauderman, William
Current Investigators: Jerrett, Michael
Institution: University of Southern California , University of California - Los Angeles
Current Institution: University of Southern California
EPA Project Officer: Chung, Serena
Project Period: November 1, 2004 through October 31, 2007
Project Amount: $449,966
RFA: Environmental Statistics Research: Novel Analyses of Human Exposure Related Data (2004) RFA Text |  Recipients Lists
Research Category: Environmental Statistics , Human Health

Objective:

In developing novel exposure models using existing data, we will test the following hypotheses: (I) different intra-urban spatial exposure models will produce variations in exposure classification within the Children’s Health Study (CHS) subjects, located in 12 communities across southern California; (II) more refined exposure models will have stronger correlations with household and personal exposure, reducing exposure measurement error; and (III) conditional on hypothesis II, more refined exposure models will demonstrate larger health effects for incident asthma. These hypotheses translate into the following research objectives: (1) to derive proximity-based, geostatistical, land use regression, and dispersion models of intra-urban exposure as well as an individual exposure model (IEM) for O3, NO2, NO, and fine particles (PM2.5) for the 12 CHS communities; (2) to assess, with empirical and simulation models, which of the ambient exposure models assigned to subjects in the CHS results in the lowest measurement error when compared to household measurements; (3) to use the modeled ambient and personal exposures to assess air pollution-health associations in CHS data sets for determining whether more refined exposure models produce larger health effects; and (4) to apply resulting exposure and health effects estimates to derive the burden of incident asthma attributable to air pollution in the 12 communities.

Approach:

We will implement proximity-based, geostatistical, land-use regression, dispersion, and IEM models for the 12 CHS communities with existing data from public agencies and past work on the CHS. The ambient estimates will be cross-validated against and compared to those from field measurements taken at hundreds of houses and schools throughout the study area. Each of the exposures will be assigned to subjects in the CHS and tested for associations with incident asthma through a multilevel Cox model, while controlling for likely confounders. A multi-level Bayesian statistical framework, with Monte Carlo simulation, will be used to assess uncertainties in the estimated health risks. Exposure-response functions from the different models will then be incorporated into a risk assessment model to derive incident asthma cases attributable to air pollution.

Expected Results:

This study will provide new estimates of ambient air pollution concentrations for one of the most polluted regions in the U.S. It will also derive potential exposure estimates for a large population of children who live in this region. These estimates will extend a $30 million cohort study on childhood asthma to address important uncertainties in the exposure assignment, and the performance of different spatial exposure models will be evaluated for the first time in the domain of this unparalleled health data set. Additionally, we will use existing air pollution and other relevant data to compare the new estimates of within-community exposure to direct measurements at the homes of study subjects. Through evaluative uncertainty analysis, the marginal benefit of moving from less to more refined exposure models will be assessed, giving guidance to policymakers and researchers on the appropriate methods for future health effects research. Our risk analysis on the burden of incident asthma attributable to air pollution will illustrate the importance of exposure uncertainty to health effects assessment. The within-community risk assessment will emphasize areas of highest risk, potentially leading to more equitable and efficient air pollution policies.

Publications and Presentations:

Publications have been submitted on this project: View all 30 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 29 journal articles for this project

Supplemental Keywords:

air pollution, exposure assessment, GIS, spatial statistics, childhood asthma, Health, RFA, Scientific Discipline, PHYSICAL ASPECTS, INTERNATIONAL COOPERATION, ENVIRONMENTAL MANAGEMENT, HUMAN HEALTH, Economic, Social, & Behavioral Science Research Program, Environmental Statistics, Health Risk Assessment, Physical Processes, Risk Assessments, Environmental Policy, Exposure, Molecular Biology/Genetics, Children's Health, Biochemistry, Risk Assessment, computer models, dietary exposure, health effects, Human Health Risk Assessment, exposure model, asthma, developmental toxicity, environmental risks, polychlorinated biphenyl, health risk analysis, statistical models, immunotoxicology, dispersion models, children, developmental effects, model assessment, children's vulnerablity, spatial correlation, air pollution, human health risk, exposure assessment, vulnerability

Progress and Final Reports:

  • 2005 Progress Report
  • 2006
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • 2006
    • 2005 Progress Report
    30 publications for this project
    29 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.