Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Preliminary Studies of Membrane-Aerated Biofilms

EPA Grant Number: FP916413
Title: Preliminary Studies of Membrane-Aerated Biofilms
Investigators: Shanahan, John W.
Institution: University of Minnesota
EPA Project Officer: Packard, Benjamin H
Project Period: January 1, 2004 through December 31, 2006
Project Amount: $110,344
RFA: STAR Graduate Fellowships (2004) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Fellowship - Environmental , Safer Chemicals

Objective:

Membrane aerated biofilm reactors (MABRs) offer an innovative new technology for the treatment of municipal wastewaters. Within the MABR, a biofilm grows on gas permeable membranes submerged in wastewater. Oxygen supplied to one side of the membranes diffuses through pores in the membrane fabric and into the base of the biofilm. In contrast, ammonium and organics diffuse from the wastewater into the biofilm at the liquid-biofilm interface. Bacterial cells within the biofilm matrix consume both oxygen and substrates for fulfillment of their energy and mass requirements, thus purifying the wastewater. By eliminating aeration of the bulk wastewater, the MABR provides a significant energy savings over conventional activated sludge systems. Furthermore, cultivation of slow growing nitrifiers is possible within the MABR without the long hydraulic residence times or extensive recirculation systems necessary in conventional systems. The objectives of this research are to: describe the behavior of MABRs using mathematical models and test the accuracy of these models using a laboratory-scale reactor.

Approach:

To describe the dynamic behavior of MABRs, a mathematical model was developed. This model was constructed using Aquasim software to quantify the behavior of a multiple population membrane-aerated biofilm under various operating conditions. Within the model, the intramembrane partial pressure, biofilm thickness, substrate loading, and average velocity may be varied. Model outputs include reactor performance, profiles of substrates, bacterial populations, and bacterial activity within the biofilm.

A laboratory-scale reactor was operated under a single set of operating conditions to test the accuracy of the model. Reactor performance was characterized via mass balances on chemical oxygen demand, ammonium, nitrate, and nitrite. Oxygen fluxes to the reactor were calculated from the stoichiometry of oxidation for ammonium and nitrite. Results demonstrated that oxygen transfer across the membrane was maintained or increased in the presence of a membrane-aerated biofilm. Model estimates of reactor performance were somewhat conservative by comparison with experimental results. Deviations between model and experimental results may be attributed to the development of irregular biofilms.

Supplemental Keywords:

fellowship, membrane-aerated biofilm reactor, MABR, municipal wastewater, wastewater treatment, bacterial populations, bacterial activity, oxygen flux, stoichiometry, oxygen transfer across membranes, Aquasim software,, Scientific Discipline, TREATMENT/CONTROL, Waste, Water, Water Pollution Control, Engineering, Chemistry, Municipal, Engineering, Chemistry, & Physics, Wastewater, Microbiology, Environmental Microbiology, Environmental Engineering, municipal waste, municipal wastewater treatment, membrane aerated biofilm, treatment, anaerobic digestion, wastewater treatment plants, pathogen removal, wastewater treatment, gas permeable biofilm membranes

Relevant Websites:

2004 STAR Graduate Fellowship Conference Poster (PDF, 1p., 172KB, about PDF)

Progress and Final Reports:

  • 2004
  • 2005
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.