Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Noncontact, Optical Molecular Method for Detection and Identification of Cryptosporidium parvum Oocysts in Drinking Water

EPA Contract Number: EPD04032
Title: Noncontact, Optical Molecular Method for Detection and Identification of Cryptosporidium parvum Oocysts in Drinking Water
Investigators: Stewart, Shona
Current Investigators: Stewart, Shona , Maier, John
Small Business: ChemImage Corporation
EPA Contact: Richards, April
Phase: I
Project Period: March 1, 2004 through August 31, 2004
Project Amount: $69,978
RFA: Small Business Innovation Research (SBIR) - Phase I (2004) RFA Text |  Recipients Lists
Research Category: Drinking Water , SBIR - Water and Wastewater , Small Business Innovation Research (SBIR)

Description:

Contamination of drinking water with pathogenic microorganisms such as Cryptosporidium has become an increasing concern in recent years. Cryptosporidium oocysts particularly are problematic, because infections caused by this organism can be life threatening in immunocompromised patients. Current methods for monitoring and analyzing water often are laborious and require expertise. In addition, many of the techniques require very specific reagents to be employed. These factors add considerable cost and time to the analytical process. Raman spectroscopy provides specific molecular information on samples and offers advantages of speed, sensitivity, and low cost over current methods of water monitoring. Raman spectroscopy has demonstrated the capability to identify and differentiate microorganisms at the species and strain levels. In addition, this technique has demonstrated sensitivities down to the single oocyst detection limit.

ChemImage Corporation will employ Raman spectroscopy and imaging to detect and identify Cryptosporidium parvum cysts in drinking water. ChemImage Corporation also will demonstrate that Raman imaging, in combination with chemometric techniques, can identify small numbers of the oocysts and differentiate between oocysts and other interferents present in drinking water. This proof of concept will be a critical first step to implementation of a new, important class of continuous, online detection strategies that will increase the safety of the water supply.

Supplemental Keywords:

small business, SBIR, Cryptosporidium parvum, drinking water, pathogenic microorganisms, Raman spectroscopy, oocyte, cyst, chemometric techniques, water supply, EPA., RFA, Scientific Discipline, INTERNATIONAL COOPERATION, Water, Environmental Chemistry, Environmental Monitoring, Drinking Water, Environmental Engineering, cryptosporidium parvum oocysts, monitoring, pathogens, detection, Raman spectroscopy, community water system, cryptosporidium , other - risk management

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.