Grantee Research Project Results
2004 Progress Report: Biological Effects of Epoxy Fatty Acids
EPA Grant Number: R829479C011Subproject: this is subproject number 011 , established and managed by the Center Director under grant R829479
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
Center: The Consortium for Plant Biotechnology Research, Inc., Environmental Research and Technology Transfer Program
Center Director: Schumacher, Dorin
Title: Biological Effects of Epoxy Fatty Acids
Investigators: Sedlacek, John D.
Institution: Kentucky State University
EPA Project Officer: Aja, Hayley
Project Period: January 1, 2003 through December 31, 2004
Project Period Covered by this Report: January 1, 2004 through December 31, 2005
RFA: The Consortium for Plant Biotechnology Research, Inc., Environmental Research and Technology Transfer Program (2001) RFA Text | Recipients Lists
Research Category: Targeted Research , Hazardous Waste/Remediation
Objective:
The objectives of this research project are to:
- isolate epoxy fatty acids from suitable natural sources that are models for oilseed improvement such as Vernonia seeds;
- produce other epoxy fatty acids using in vitro enzymes, microorganisms, and engineered plant tissues;
- test the effects of these epoxy fatty acids on stored product insect pests and model bacteria;
- and test some of these epoxy compounds in the laboratory as a new natural pest control approach to vegetable insect pests.
Progress Summary:
We conducted replicated bioassays exposing maize weevil, sawtoothed grain beetle, red flour beetle, and flour mill beetle to two epoxy fatty acids derived from castor beans, Ricinis communis, and three epoxy fatty acids extracted from iron weed, Vernonia galamensis. Specifically, we quantified adult mortality and progeny production of these four stored grain beetle species at a low dose (50 ppm) and a high dose (30 X 103 ppm) of castor oil, hydrolyzed castor oil, vernonia oil, vernolate, and vernolic acid. The high dose is similar to the amount found in V. galamensis. There was no impact of any of the epoxy fatty acids on adult mortality or progeny production at the low dose. Similarly, there was no impact of any of the test compounds on adult mortality at the high dose. Vernonia oil, vernolate, or vernolic acid treated corn kernels at the high dose, however, appeared to negatively impact progeny production of all four species. Differences between control and treated kernels ranged from 2.3 to 5.8 fold for sawtoothed grain beetle, 2.2 to 8.6 fold for red flour beetle, 70 to 245 fold for flour mill beetle, and 12.7 to 140 fold for maize weevil.
Future Activities:
We intend to:
- analyze the initial data statistically to verify the differences observed in progeny production;
- repeat the bioassays at one-half the current dose;
- conduct bioassays examining the relationship between the epoxy fatty acids and feeding and oviposition behavior of the stored grain beetle pests;
- and attempt bioassays with striped cucumber beetles.
Another project examining the impact of several additional epoxy fatty acids also is planned.
Journal Articles:
No journal articles submitted with this report: View all 4 publications for this subprojectSupplemental Keywords:
epoxy fatty acids, stored grain insect pests, maize weevil, sawtoothed grain beetle, red flour beetle, flour mill beetle, insecticides, sustainable industry/business, treatment/control, agricultural engineering, environmental engineering, geochemistry, new/innovative technologies, technology, Agrobacterium, bacteriacides, bioenergy, bioengineering, biological effects, biotechnology, engineered plant tissues, genetics, in vitro enzymes, oilseed improvement, plant genes,, Scientific Discipline, TREATMENT/CONTROL, Sustainable Industry/Business, Geochemistry, Technology, New/Innovative technologies, Environmental Engineering, Agricultural Engineering, agrobacterium, bioengineering, genetics, epoxy fatty acids, in vitro enzymes, engineered plant tissues, oilseed improvement, plant genes, engineered plant tisues, biotechnology, remediation, bacteriacides, biological effectsRelevant Websites:
Progress and Final Reports:
Original AbstractMain Center Abstract and Reports:
R829479 The Consortium for Plant Biotechnology Research, Inc., Environmental Research and Technology Transfer Program Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R829479C001 Plant Genes and Agrobacterium T-DNA Integration
R829479C002 Designing Promoters for Precision Targeting of Gene Expression
R829479C003 aka R829479C011 Biological Effects of Epoxy Fatty Acids
R829479C004 Negative Sense Viral Vectors for Improved Expression of Foreign Genes in Insects and Plants
R829479C005 Development of Novel Plastics From Agricultural Oils
R829479C006 Conversion of Paper Sludge to Ethanol
R829479C007 Enhanced Production of Biodegradable Plastics in Plants
R829479C008 Engineering Design of Stable Immobilized Enzymes for the Hydrolysis and Transesterification of Triglycerides
R829479C009 Discovery and Evaluation of SNP Variation in Resistance-Gene Analogs and Other Candidate Genes in Cotton
R829479C010 Woody Biomass Crops for Bioremediating Hydrocarbons and Metals
R829479C011 Biological Effects of Epoxy Fatty Acids
R829479C012 High Strength Degradable Plastics From Starch and Poly(lactic acid)
R829479C013 Development of Herbicide-Tolerant Energy and Biomass Crops
R829479C014 Identification of Receptors of Bacillus Thuringiensis Toxins in Midguts of the European Corn Borer
R829479C015 Coordinated Expression of Multiple Anti-Pest Proteins
R829479C016 A Novel Fermentation Process for Butyric Acid and Butanol Production from Plant Biomass
R829479C017 Molecular Improvement of an Environmentally Friendly Turfgrass
R829479C018 Woody Biomass Crops for Bioremediating Hydrocarbons and Metals. II.
R829479C019 Transgenic Plants for Bioremediation of Atrazine and Related Herbicides
R829479C020 Root Exudate Biostimulation for Polyaromatic Hydrocarbon Phytoremediation
R829479C021 Phytoremediation of Heavy Metal Contamination by Metallohistins, a New Class of Plant Metal-Binding Proteins
R829479C022 Development of Herbicide-Tolerant Energy and Biomass Crops
R829479C023 A Novel Fermentation Process for Butyric Acid and Butanol Production from Plant Biomass
R829479C024 Development of Vectors for the Stoichiometric Accumulation of Multiple Proteins in Transgenic Crops
R829479C025 Chemical Induction of Disease Resistance in Trees
R829479C026 Development of Herbicide-Tolerant Hardwoods
R829479C027 Environmentally Superior Soybean Genome Development
R829479C028 Development of Efficient Methods for the Genetic Transformation of Willow and Cottonwood for Increased Remediation of Pollutants
R829479C029 Development of Tightly Regulated Ecdysone Receptor-Based Gene Switches for Use in Agriculture
R829479C030 Engineered Plant Virus Proteins for Biotechnology
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.
Project Research Results
Main Center: R829479
208 publications for this center
44 journal articles for this center