Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Predictive Soil Modeling in Soil Survey

EPA Grant Number: U915632
Title: Predictive Soil Modeling in Soil Survey
Investigators: Scull, Peter R.
Institution: San Diego State University
EPA Project Officer: Lee, Sonja
Project Period: August 1, 1999 through August 1, 2002
Project Amount: $76,117
RFA: STAR Graduate Fellowships (1999) RFA Text |  Recipients Lists
Research Category: Fellowship - Geography Earth Sciences , Ecological Indicators/Assessment/Restoration , Academic Fellowships

Objective:

The objective of this research project is to integrate Geographic Information Systems and Remote Sensing technology into standard soil surveys in order to make large-scale soil mapping more cost-effective, and to produce more robust data products.

Approach:

Decision-tree analysis (DTA) is a model framework that can be used to create predictive models of soil occurrence. DTA was selected because of its capability to integratingintegrate a wide range of data sets (remote sensing and DEM products, as well as a variety of ancillary data), and because it makes intuitive sense, allowing easy communication with soil experts. DTA involves successively partitioning the dependant variable into increasingly homogeneous subsets. Splits, or rules defining how to partition the data, are selected based on information statistics that define how well the split decreases impurity within the data set. Once the tree has been constructed (or grown), it has encoded a set of decision rules that describe the data -partitioning process. These rules can be applied to a geographic database to predict the value of a response variable in an area where the predictor variables are known, but the response variable is not. Binary decision -tree models have been developed in areas previously mapped, and will be applied in similar areas that have not yet been mapped. This method can be used to provide the soil mapper with a set of maps characterizing the probability of mapping unit occurrence in an unmapped area.

Supplemental Keywords:

fellowship, predictive soil mapping, Geographic Information Systems, decision-tree analysis, DTA, soil geography, soil survey., RFA, Scientific Discipline, Ecosystem Protection/Environmental Exposure & Risk, RESEARCH, Monitoring/Modeling, Monitoring, Environmental Monitoring, Ecology and Ecosystems, remote sensing, predicitve soil modeling, decision tree models, geo-spatial internet system, predictive model, GIS, ecological models

Progress and Final Reports:

  • 2000
  • 2001
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.