Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Can Microbial Communities in Stream Sediments be Used To Evaluate the Availability and Composition of Dissolved Organic Carbon in Stream Ecosystems?

EPA Grant Number: U914799
Title: Can Microbial Communities in Stream Sediments be Used To Evaluate the Availability and Composition of Dissolved Organic Carbon in Stream Ecosystems?
Investigators: Sobczak, William V.
Institution: Cornell University
EPA Project Officer: Packard, Benjamin H
Project Period: January 1, 1995 through January 1, 1996
Project Amount: $102,000
RFA: STAR Graduate Fellowships (1995) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Ecological Indicators/Assessment/Restoration , Fellowship - Ecology

Objective:

The objective of this research project is to understand how changes in both dissolved organic carbon (DOC) quantity and quality alter the hyporheic zone's bacterial community, and ultimately, its role in hyporheic food webs and ecosystem processes.

Approach:

An appreciation of hyporheic microbial processes in streams linking agricultural sections of the watershed with the Hudson River's main channel is fundamental to understanding the sources, disposition, and transformation of organic matter in the Hudson River ecosystem. We will address the following: (1) how does variation in the quality and quantity of DOC affect bacterial biomass and productivity in the hyporheic zones of tributaries entering the Hudson River? (2) how does DOC originating from contrasting sources within the Hudson River watershed affect bacterial biomass and productivity in the hyporheic zone? and (3) do hyporheic zones function as significant carbon sinks?

We have selected several stream systems for detailed study based on an extensive regional (Hudson River Valley, NY) survey of surface water DOC concentrations. We surveyed a wide array of tributaries (n = 43) to facilitate the selection of tributaries that represent a natural range of DOC concentration (1.1-7.7 mg/L). On each of the five rivers/streams that we are currently studying, we located gravel bars in riffles in which exchange of surface water and hyporheic water was likely and established transects (two per stream) of shallow (0.5 m deep) wells made of PVC pipe (diameter = 1.91 cm). These wells permitted porewater DOC and dissolved oxygen (DO) to be sampled along predicted hyporheic flow paths. In a subset of these transects, we incubated artificial substrates within larger well points (diameter = 3.81 cm) to compare differences in bacterial productivity and biomass between rivers and within transects in which DOC gradients were documented. Wells were leveled so that flow path slopes could be determined. Hydrologic parameters (hydraulic conductivity, porosity, velocity) were estimated for the stream sediments.

Supplemental Keywords:

fellowship, dissolved oxygen, DO, dissolved organic carbon, DOC, hyporheic, Hudson River watershed, ecosystem., RFA, Scientific Discipline, Water, Water & Watershed, Environmental Chemistry, Biochemistry, Ecology and Ecosystems, Watersheds, dissolved organic matter, bacteria, agricultural watershed, stream ecosystems, stream water chemistry, dissolved organic carbon, Hudson River, microbial food web

Progress and Final Reports:

  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.