Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Modified Natural Zeolite (Mnz) as a Selective Sorbent for Simultaneous Removal of Arsenites and Arsenates

EPA Grant Number: R831430
Title: Modified Natural Zeolite (Mnz) as a Selective Sorbent for Simultaneous Removal of Arsenites and Arsenates
Investigators: Sengupta, Arup K. , Munley, Vincent G.
Current Investigators: Sengupta, Arup K.
Institution: Lehigh University
EPA Project Officer: Richards, April
Project Period: October 1, 2003 through September 30, 2004
Project Amount: $50,000
RFA: New Technologies for the Environment (NTE) (2003) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Sustainable and Healthy Communities , Pollution Prevention/Sustainable Development

Objective:

The newly promulgated arsenic maximum contaminant level (MCL) of 10 µg/L in drinking water would require corrective action for about four thousand (4,000) water supply systems in the USA serving small communities. In addition to being cost effective, the arsenic removal system for small communities should be operationally simple requiring minimal human intervention. The total dissolved arsenic concentration in groundwater may undergo changes over a period of time. Also, both As(III) and As(V), referred to as arsenites and arsenates, may be present simultaneously in groundwater. Arsenic concentration in the treated water should remain less than 10 µg/L independent of any fluctuations of arsenic concentrations and relative distribution of arsenites and arsenates in groundwater. A simple-to-operate fixed-bed sorption process can be very effective in satisfying these goals. The general objective of this project is to develop a Modified Natural Zeolite (MNZ) that is inexpensive, highly selective toward As(III) and As(V) and suitable for use in fixed-bed units requiring no pre- or post-treatment.

Approach:

Recent studies at Lehigh University led to the development of a hybrid polymeric/inorganic sorbent with high sorption affinity toward As(III) and As(V) compounds. Each sorbent particle is essentially a cation exchanger bead within which agglomerates of nanoscale Hydrated Fe(III) Oxide (HFO) particles have been uniformly and irreversibly dispersed using a simple chemical-thermal technique. However, the parent cation exchanger bead is expensive ($2.00 per pound) and the sorbent needs to be regenerated and reused. The regeneration is feasible but the procedure is operationally complex for small communities with limited resources. Southwest and western regions of the USA are blessed with an abundant supply of inorganic natural zeolites which are essentially granular aluminosilicates. Of all the naturally occurring zeolites, clinoptilolite has high cation exchange capacity, is porous, inexpensive and readily available in North America. The cost of clinoptilolite varies from 10-15 cents/pound. We propose to utilize clinoptilolite's ion exchange capacity to irreversibly disperse Hydrated Fe(III) Oxide (HFO) particles within its porous structure using the chemical-thermal technique developed in our laboratory. Subsequently, the resulting material, referred to as Modified Natural Zeolite or MNZ, will be tested for its arsenic removal properties.

Expected Results:

The development of MNZ provides a desirable synergy: while the zeolite provides favorable hydraulic properties in a fixed-bed column, HFO particles are the active ingredients for selective sorption of arsenites and arsenates. MNZ is inexpensive and, therefore, can be discarded after one-year cycle avoiding the need for regeneration. The results of the study are likely to validate that clinotilolite, an inexpensive natural zeolite, can be tailored into an arsenic-selective sorbentusing a simple chemical-thermal technique.

Publications and Presentations:

Publications have been submitted on this project: View all 2 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 1 journal articles for this project

Supplemental Keywords:

arsenic, modified natural zeolite, contaminated groundwater, adsorption, drinking water., RFA, Scientific Discipline, INTERNATIONAL COOPERATION, Water, TREATMENT/CONTROL, POLLUTANTS/TOXICS, Sustainable Industry/Business, Chemical Engineering, Environmental Chemistry, Sustainable Environment, Treatment Technologies, cleaner production/pollution prevention, Arsenic, Technology, Technology for Sustainable Environment, Environmental Monitoring, Water Pollutants, New/Innovative technologies, Drinking Water, drinking water treatment facilities, clean technologies, detoxification, green engineering, other - risk assessment, arsenic removal, adsorption, drinking water distribution system, treatment, sorbents, modified natural zeolite, analysis of inorganic methods, activated carbons, drinking water contaminants, drinking water treatment, pollution prevention, green chemistry

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    2 publications for this project
    1 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.