Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Source-Oriented Chemical Transport Model for Primary and Secondary Organic Aerosol

EPA Grant Number: R831082
Title: Source-Oriented Chemical Transport Model for Primary and Secondary Organic Aerosol
Investigators: Kleeman, Michael J. , Griffin, Robert J. , Clegg, Simon
Institution: University of California - Davis , University of New Hampshire
EPA Project Officer: Chung, Serena
Project Period: October 1, 2003 through September 30, 2006 (Extended to September 30, 2008)
Project Amount: $450,000
RFA: Measurement, Modeling, and Analysis Methods for Airborne Carbonaceous Fine Particulate Matter (PM2.5) (2003) RFA Text |  Recipients Lists
Research Category: Air , Air Quality and Air Toxics , Particulate Matter

Description:

Primary Organic Aerosol (POA) and Secondary Organic Aerosol (SOA) contribute significantly to airborne PM2.5 concentration throughout the United States. Our current understanding about the most significant sources of POA and SOA are limited by the capabilities of receptor-oriented statistical models. In this research we will construct a source-oriented Chemical Transport Model that can identify source contributions to POA and SOA concentrations with improved accuracy and resolution relative to receptor-oriented techniques.

Approach:

A state-of-the-art secondary organics module that considers activity coefficient corrections for organic-organic and organic-inorganic interactions will be combined with a host source-oriented CTM. The vapor pressure of organic species above the surface of particles released from different sources will be predicted based on thermodynamic principals. The dynamic exchange of semi-volatile organic compounds between the gas and particle phases will be calculated based on particle size, vapor pressure, gas-phase diffusivity, and interfacial mass transfer. The new source-oriented CTM with improved SOA calculations will be used to predict concentrations of elemental carbon (EC), POA, and SOA at EPA Supersite locations in Los Angeles, Fresno, and St. Louis. The sources of POA and SOA will be identified through the unique features of the source-oriented CTM.

Expected Results:

Source contributions to EC, POA, and SOA will be identified at three heavily polluted locations: Los Angeles, Fresno, and St. Louis. This will improve our understanding of the health risk posed by different emissions sources in these heavily populated areas. The influence of internal vs. external mixture and bulk equilibrium vs. size-resolved dynamic approaches on predicted SOA formation in air quality models will be quantified so that appropriate techniques can be used in the future. The likely impact of interactions between inorganic and soluble organic compounds in aerosol particles on SOA formation and aerosol water uptake will be established. This will result in a more cost effective allocation of federal and state environmental protection resources during future air quality modeling exercises.

Publications and Presentations:

Publications have been submitted on this project: View all 28 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 13 journal articles for this project

Supplemental Keywords:

secondary organic aerosols, source-oriented chemical transport model, source apportionment, inorganic ? organic interactions., RFA, Scientific Discipline, Air, Ecosystem Protection/Environmental Exposure & Risk, RESEARCH, particulate matter, Air Quality, air toxics, Environmental Chemistry, Air Pollution Effects, Monitoring/Modeling, Analytical Chemistry, Monitoring, Environmental Monitoring, Engineering, Chemistry, & Physics, Environmental Engineering, carbon aerosols, air quality modeling, particle size, atmospheric particulate matter, health effects, atmospheric dispersion models, atmospheric measurements, secondary organic aerosols, aerosol particles, mass spectrometry, human health effects, air modeling, air quality models, monitoring stations, air sampling, gas chromatography, thermal desorption, carbon particles, air quality model, emissions, source oriented CMT, modeling, particulate matter mass, human exposure, secondary organic aerosol, particle phase molecular markers, monitoring of organic particulate matter, modeling studies, transport modeling, particle dispersion, aerosol analyzers

Progress and Final Reports:

  • 2004 Progress Report
  • 2005 Progress Report
  • 2006 Progress Report
  • 2007 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2007 Progress Report
    • 2006 Progress Report
    • 2005 Progress Report
    • 2004 Progress Report
    28 publications for this project
    13 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.