Grantee Research Project Results
Efficient Regenerating Oxidizer for Destruction of Volatile Organic Compounds
EPA Contract Number: 68D03032Title: Efficient Regenerating Oxidizer for Destruction of Volatile Organic Compounds
Investigators: Dhooge, Patrick M.
Small Business: Nimitz Inc.
EPA Contact: Richards, April
Phase: I
Project Period: April 1, 2003 through September 1, 2003
Project Amount: $70,000
RFA: Small Business Innovation Research (SBIR) - Phase I (2003) RFA Text | Recipients Lists
Research Category: SBIR - Air Pollution , Small Business Innovation Research (SBIR) , Air Quality and Air Toxics
Description:
To help improve air quality, the U.S. Environmental Protection Agency is seeking innovative and cost-effective new technologies to remove volatile organic compounds (VOCs) from the emissions of stationary sources. The current technologies, carbon adsorbers and catalytic thermal oxidizers, are heavy, expensive, insufficiently regenerating, and sometimes not sufficiently effective to meet regulatory requirements. Nimitz, Inc., doing business as the Environmental Technology & Engineering Center (ETEC), proposes to develop an inexpensive, catalytic solid oxidant system that will continuously and completely oxidize VOCs at near ambient temperature. The new technology will use a novel catalyzed oxidant that will be easily and continuously regenerated at very low cost to provide highly effective, inexpensive, low-maintenance, and highly reliable destruction of VOCs. The Phase I research project will determine the feasibility of the novel catalyzed oxidant by applying it and selected catalysts to substrates, and measuring the oxidation rates of acetone, toluene, and trichloroethylene on the coated substrates. The results of the Phase I project will be used to estimate the size, weight, and cost for emissions treatment to determine commercial feasibility. In Phase II, ETEC will optimize the oxidation chemistry; perform scale-up engineering studies; design, build, and test a prototype treatment system; and hold discussions with potential manufacturers.
The results of Phase I, if successful, will demonstrate the feasibility of a new technology for effectively, inexpensively, and reliably destroying VOCs in emissions, and an estimate of the size, weight, and cost of a system using the technology. The results of Phase II, if successful, will be the development of an optimized catalyzed oxidant formula and demonstration of the new technology at prototype scale. The product will be a patented composition for destroying organic compounds in emissions from stationary sources. Applications of the new technology include control of emissions from stationary sources and building air treatment. Potential stationary source users include gasoline marketing operations, printing shops, surface coating shops, and many other manufacturing operations that use or produce VOCs. Potential indoor air treatment users include office buildings, hospitals and other care facilities, homes, and factories. Commercial application of the technology will result in pollution prevention, reduction of adverse health effects from exposure to VOCs, and energy savings. The estimated total market size is approximately $100 million per year.
Supplemental Keywords:
small business, SBIR, pollution prevention, regenerating oxidizer, volatile organic compounds, VOCs, carbon adsorbers, catalytic thermal oxidizers, catalyzed oxidant, EPA., Sustainable Industry/Business, Air, Scientific Discipline, POLLUTANTS/TOXICS, Chemical Engineering, Ecological Risk Assessment, Environmental Chemistry, Engineering, Chemistry, & Physics, cleaner production/pollution prevention, Air Pollutants, air toxics, Chemicals, Environmental Engineering, catalysts, hazardous air pollutants, hydrocarbons, pollution prevention, stratospheric ozone, kinetic models, regenerating oxidizer, emission controls, air emissions, risk assessment, combustion, VOC removal, HAPS, Clean Air Act , hazardous air pollutants (HAPs), VOCs, chemical kinetics, catalytic oxidation, oxidation, Volatile Organic Compounds (VOCs), stationary sourcesProgress and Final Reports:
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.