Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Integrating Economic and Physical Data to Forecast Land Use Change and Environmental Consequences for California's Coastal Watersheds.

EPA Grant Number: R829803
Title: Integrating Economic and Physical Data to Forecast Land Use Change and Environmental Consequences for California's Coastal Watersheds.
Investigators: Merenlender, Adina , Biging, Greg , Landis, John
Institution: University of California - Berkeley
EPA Project Officer: Hahn, Intaek
Project Period: July 1, 2002 through June 30, 2004
Project Amount: $259,454
RFA: Futures: Research in Socio-Economics (2001) RFA Text
Research Category: Nanotechnology , Watersheds , Environmental Justice

Description:

The purpose of this research is to examine the environmental consequences of land use change for California's coastal watersheds that are experiencing rapid urban and agricultural expansion. These foremost land use stresses can result in cumulative impacts to these coastal watersheds that impact anadromous fish. The specific objectives are to (1) develop a spatially explicit economic land use change model, (2) compare the proposed economic modeling approach to a more traditional non-economic (or reduced form) land use model, (3) determine changes in land cover based on the resulting scenarios of land use change, and (4) address consequences for coastal Mediterranean watersheds and instream habitat for endangered salmon.

Approach:

Our primary task will be to develop an economic land use change model which links parcel-level transactions to site and neighborhood characteristics. This economic approach will be compared to a more traditional non-economic (or reduced-form) approach that uses only physical variables within a geographic information system (GIS).

The economic land use change model being proposed will be based on a two-stage process: 1) hedonic models of land value for each use type and 2) a discrete choice model to predict land conversion probabilities. The spatial hedonic model of land values will be determined separately for three land use types: rural residential, vineyard, and "extensive use" land. Land values from recently sold parcels for each use type are regressed as a function of the site and neighborhood characteristics (i.e. slope, soil, accessibility to urban centers, zoning, etc.). Subsequently, the estimated value by use type will be determined for all parcels in the region of "developable" land, based on the each parcel's site characteristics and the hedonic price model parameters.

In the second stage, a multinomial discrete choice model of land conversion is determined at a parcel-level using the estimated land value for each of the three land uses as exogenous variables, as well as other costs of conversion variables. The model output is a probability map representing the value of future residential and vineyard development for each "developable" land parcel.

Regulatory agencies recognize that activities such as urban development and intensive agriculture can negatively affect water quality and instream habitat for salmonids. The various scenarios of land use change resulting from this proposed modeling approach will be combined with existing models from our ongoing research in the Russian River Basin on the influence of land use on stream habitat, cumulative impacts, and other potential environmental costs.

Expected Results:

This research will provide new techniques that will allow for spatial economic models of land use change. The resulting future scenarios of land use change will be used as input for biophysical watershed models, which are being developed to examine the effects of land cover on stream habitat quality for coastal salmon. These improved approaches to modeling agriculture and urban development and its impacts on the environment will provide better tools for setting conservation priorities in regions facing agricultural and urban sprawl issues.

In summary, this research is designed to improve land use change forecasting using spatially explicit economic models. These models will then be used to predict cumulative watershed effects of land use change in coastal California with a particular focus on anadromous fish habitat.

Publications and Presentations:

Publications have been submitted on this project: View all 26 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

biodiversity, farmer, land owner, ecosystem, decision-making, socio-economic, agroecology, biology, northwest, social science, ecology, environmental assets, cost- benefit, RFA, Scientific Discipline, Ecosystem Protection/Environmental Exposure & Risk, Air, Geographic Area, Water, ECOSYSTEMS, Economic, Social, & Behavioral Science Research Program, Economics & Decision Making, State, Urban and Regional Planning, Atmosphere, Watersheds, decision-making, Monitoring/Modeling, Air Pollution Effects, Social Science, Species, Hydrology, climate change, Habitat, Water & Watershed, California (CA), economic research, urban planning, coastal watershed, predictive model, socioeconomics, urbanization, biodiversity, conservation biology, endangered species, habitat disturbance, water quality, coastal wetlands, ecosystem valuation, policy making, coastal ecosystems, management alternatives, endangered salmon, habitat dynamics, land use effects, environmental monitoring, environmental decision making, econometrics, fish habitat, habitat preservation, changing environmental conditions, land use, aquatic habitat protection , ecology assessment models, hedonic models, Anadromous fish, assessing ecosystem vulnerability, community based environmental planning, decision making, econometric analysis, environmental policy, watershed, urbanizing watersheds

Progress and Final Reports:

  • 2003 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2003 Progress Report
    26 publications for this project
    3 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.