Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

The Effect of Clay on DNAPL Behavior During Alcohol Flushing

EPA Grant Number: R827120
Title: The Effect of Clay on DNAPL Behavior During Alcohol Flushing
Investigators: Hayden, Nancy J.
Institution: University of Vermont
EPA Project Officer: Aja, Hayley
Project Period: December 1, 1998 through November 11, 2001 (Extended to June 21, 2003)
Project Amount: $375,240
RFA: Exploratory Research - Environmental Engineering (1998) RFA Text |  Recipients Lists
Research Category: Sustainable and Healthy Communities , Land and Waste Management , Safer Chemicals

Description:

The overall objective of the proposed research project is to investigate the effect of clays (and clay colloids) on the distribution of dense nonaqueous phase liquids (DNAPLs) in porous media and the subsequent effect on DNAPL dissolution, mass transfer and interfacial phenomena during alcohol flushing. Subsurface environments contaminated with DNAPLs are currently difficult, if not impossible, to remediate using current methods, such as pump and treat. An improved understanding of DNAPL behavior is critical for improving restoration attempts using innovative in-situ methods such as alcohol flushing. The impact of clays and colloidal clay on the behavior of DNAPLs in the subsurface including effects on distribution, dissolution and remediation is unknown.

Approach:

A unique series of experiments and analyses will be performed at the micro-scale, pore-scale, and column-scale levels to meet the objectives. Both swelling and nonswelling clays will be used in batch, and column experiments. The impact of the amount of clay present will also be investigated. Initial characterization of the clays will include X-ray diffraction, infra-red spectroscopy (IR) and measurements of hydrophobicity, particle size distribution and others. Batch experiments will be used to investigate the effect of clay colloids on interfacial phenomena and dissolution in alcohol solutions. Column studies will be used to determine: pressure-saturation relationships for water-DNAPL systems; permeabilities with and without a residual DNAPL saturation; residual DNAPL saturation and trapping; dissolution; and remobilization of the DNAPL during water and alcohol flushing. Long columns will be used to investigate mobilization on a larger scale. X-ray diffraction, IR and electrophoretic studies will be performed to determine changes in clay characteristics due to interaction of clays with DNAPLs and alcohol solutions. Pore-scale studies will be done to visualize and quantify the effects of clays on pore shape, pore size and DNAPL ganglia size and shape using Environ. Scanning Electron Microscopy (ESEM).

Expected Results:

The benefits of this research will be to advance our understanding the effect of clays on interfacial phenomenon, and soil characteristics related to DNAPLs and DNAPL remediation. A fundamental understanding of clay and clay colloids on DNAPL behavior and in-situ DNAPL remediation technologies is currently needed for the further development and application of cost effective environmental restoration techniques. Remediation techniques which address the DNAPL source areas are essential in order to better manage and reduce the risk associated with hazardous waste sites. The results of this research will be disseminated in refereed publications and at national conferences. Additional benefits of this research include enhancing graduate education within the Department of Civil and Environmental Engineering at the University of Vermont (UVM) and providing interaction with Chemistry and Geology (UVM), and MIT's Center for Materials Science.

Publications and Presentations:

Publications have been submitted on this project: View all 8 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 2 journal articles for this project

Supplemental Keywords:

Cosolvent flushing, soil colloids,, RFA, Scientific Discipline, Air, Toxics, Waste, Remediation, Environmental Chemistry, HAPS, chemical mixtures, Hazardous Waste, Hazardous, Engineering, Chemistry, & Physics, Electron Microscopy, hazardous waste treatment, DNAPL, alcohol flushing, infrared spectroscopy sensor, interfacial phenomena, mass transfer, electrophoretic studies, hazardous chemicals, restoration, clay

Progress and Final Reports:

  • 1999
  • 2000 Progress Report
  • 2001 Progress Report
  • 2002 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2002 Progress Report
    • 2001 Progress Report
    • 2000 Progress Report
    • 1999
    8 publications for this project
    2 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.