Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Novel Catalysts for Lean-NOx Reduction by Methane

EPA Grant Number: R825430
Title: Novel Catalysts for Lean-NOx Reduction by Methane
Investigators: Flytzani-Stephanopoulos, Maria
Institution: Tufts University
EPA Project Officer: Hahn, Intaek
Project Period: December 5, 1996 through December 4, 1999
Project Amount: $479,533
RFA: Exploratory Research - Air Engineering (1996) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Air , Safer Chemicals , Land and Waste Management

Description:

The efficient removal of nitrogen oxides, NOx, which are known precursors of acid rain and urban smog, from the exhaust gas of both stationary and mobile combustion sources continues to be a challenge. While fuel switch and more so combustion modifications are used to suppress NOx emissions, it is recognized that removal of NOx to very low levels should also involve the application of catalytic post-combustion emissions control technology. For electric and gas utilities and industrial boilers, with oxygen-rich exhaust gas, the only commercial lean NOx reduction technology is presently the selective catalytic reduction (SCRO of NOx by ammonia, an expensive and complex process. More attractive processes involving injection of hydrocarbon reductants are under intensive research and development at the present time. Among these, the SCR of NO by methane is particularly attractive because natural gas is best integrated with the power plant operation. A powerful NOx reduction catalyst can also relax the steam addition requirement and CO emission problem from gas turbines. Since some unconverted methane is present in the exhaust gas stream, the control system may be simplified to one requiring no injection of reductants and associated controls. A simple catalytic converter is, thus, envisioned for application to gas turbines, compressed natural gas vehicles, etc.

Due to the refractory nature of methane, the SCR of NOx by methane is hard to accomplish. Only a few catalyst systems have been identified to date. These catalysts typically comprise a well dispersed metal in a zeolite host matrix. Generally, the catalyst activity drops in the presence of water vapor and is at least an order of magnitude lower than that of commercial ammonia-SCR catalysts. This proposal involves the development and testing of promoter-modified, metal ion-exchanged zeolites, which in preliminary work in this lab have shown promising activity for the SCR of NO by methane at exhaust gas temperatures in the range of 400-650?C. Detailed evaluation of the effects of catalyst composition and preparation conditions on catalyst activity is planned though kinetic and structural measurements and parametric activity studies. Microreactor testing of catalysts, gas uptake experiments in a TGA, temperature programmed desorption of NO, O2, and CH4 coupled with mass spectrometry, TGA/IR experiments, and detailed surface and bulk analyses of solid catalysts will be used in this work. The knowledge gained from the study of metal ion interactions in the zeolite structure will be transferred to open oxide supports. This will both provide mechanistic insight into the methane-SCR process as well as lead to the development of less expensive, practical lean-NOx reduction catalyst.

Publications and Presentations:

Publications have been submitted on this project: View all 19 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 4 journal articles for this project

Supplemental Keywords:

acid rain, hydrocarbon, air, catalysts, measurements, mass spectrometry, emissions, natural gas, smog, combustion, industrial boilers, RFA, Air, Scientific Discipline, INDUSTRY, Waste, Toxics, Industrial Processes, Engineering, Ecology, HAPS, mobile sources, Environmental Chemistry, Engineering, Chemistry, & Physics, Incineration/Combustion, tropospheric ozone, incineration, nitrous oxide, urban air, catalytic combustion, hydrocarbon, industrial waste, mass spectrometry, industrial boilers, combustion emissions, catalyst formulations, emission controls, Nitrogen Oxides, Nox, Ammonia, atmospheric deposition, combustion, methane , smog, acid deposition, emission control technologies, combustion technology, urban air , electric utilities, acid rain, methane, emissions measurement

Progress and Final Reports:

  • 1997 Progress Report
  • 1998 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 1998 Progress Report
    • 1997 Progress Report
    19 publications for this project
    4 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.