Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Nanostructured Porous Silicon and Luminescent Polysiloles as Chemical Sensors for Carcinogenic Chromium(VI) and Arsenic(V)

EPA Grant Number: R829619
Title: Nanostructured Porous Silicon and Luminescent Polysiloles as Chemical Sensors for Carcinogenic Chromium(VI) and Arsenic(V)
Investigators: Trogler, William C. , Sailor, Michael J.
Institution: University of California - San Diego
EPA Project Officer: Hahn, Intaek
Project Period: January 1, 2002 through December 31, 2004
Project Amount: $400,000
RFA: Exploratory Research: Nanotechnology (2001) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Safer Chemicals

Description:

The chief goal is to develop new selective solid state sensors for carcinogenic and toxic chromium(VI) and arsenic(V) in water based on redox quenching of the luminescence from nanostructured porous silicon and polysiloles.

Approach:

Nanostructured porous silicon, as well as polysilole nanowire coatings, will be chemically modified to enhance binding of the chromate and arsenate anions. Chemical modification to vary the redox potential of the polysilole excited state will also be used as a way to impart chemical selectivity. Both sensor approaches will be combined by encapsulating the polysilole in a nanotextured microcavity between two Bragg stacks constructed from porous silicon. Such optical devices have been shown to provide significant detection sensitivity enhancements. The nanoporous material will readily admit small inorganic analytes, such as chromate and arsenate, and exclude biomolecules that might confound the measurements. Sensors based on silicon wafer and polymer technologies are also readily adaptable to fabrication. The fluorescence quenching detection modality is also manufacturable. The essential electronics requires a blue or UV LED as the excitation source and an inexpensive photodiode detector.

Expected Results:

Potential applications of such real time solid state sensors include remote sensing and industrial process control. The focus on chromium(VI) and arsenic(V) detection is dictated by the redox quenching mechanism that is being used, as well as by the importance of chromium(VI) and arsenic(V) as regulated chemicals under the Safe Drinking Water Act. The results address the needs identified in the solicitation as nanotechnology is applied to the development of solid state sensors that can be used to monitor pollutants in water that are currently of great concern to the EPA's regulatory mission.

Publications and Presentations:

Publications have been submitted on this project: View all 25 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 6 journal articles for this project

Supplemental Keywords:

water, drinking water, groundwater, carcinogen, toxics, heavy metals, effluent, discharge, innovative technology, monitoring, analytical, measurement methods, remote sensing, industry., RFA, Scientific Discipline, Toxics, Water, Ecosystem Protection/Environmental Exposure & Risk, POLLUTANTS/TOXICS, Sustainable Industry/Business, National Recommended Water Quality, Sustainable Environment, Physics, Environmental Chemistry, Chemistry, Arsenic, Technology for Sustainable Environment, Analytical Chemistry, Monitoring/Modeling, Biochemistry, New/Innovative technologies, Chemistry and Materials Science, Water Pollutants, Engineering, Environmental Engineering, 33/50, biosensing, nanosensors, environmental monitoring, chemical sensors, chromium & chromium compounds, nanotechnology, environmental sustainability, polysiloles, environmentally applicable nanoparticles, chemical sensor, nanostructured porous silicon, carcinogens, sustainability, water quality, innovative technologies

Progress and Final Reports:

  • 2002 Progress Report
  • 2003 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2003 Progress Report
    • 2002 Progress Report
    25 publications for this project
    6 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.