Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Modeling Non-Methane Hydrocarbon Emissions from Forest Canopies

EPA Grant Number: GF9500040
Title: Modeling Non-Methane Hydrocarbon Emissions from Forest Canopies
Investigators: Bowling, David R.
Institution: University of Colorado at Boulder
EPA Project Officer: Hahn, Intaek
Project Period: September 1, 1995 through January 1, 2000
Project Amount: $32,700
RFA: STAR Graduate Fellowships (1995) RFA Text |  Recipients Lists
Research Category: Fellowship - Earth , Ecological Indicators/Assessment/Restoration , Academic Fellowships

Objective:

The purpose of this project is to investigate various environmental controls on hydrocarbon emissions at the forest canopy level, and the influence of hydrocarbon emissions on tropospheric chemistry. The results of this study will be used to determine what factors are necessary to adequately predict hydrocarbon emissions, specifically, isoprene and monoterpene, at canopy, ecosystem, and regional levels, and to develop and validate predictive models for these forest hydrocarbon emissions. The specific approach under this study includes: 1) development of a canopy-level model for coniferous forest emissions, 2) development of a phenology model for basal emission rate, and 3) integration of the canopy and phenology models into chemical transport models. The approach includes conducting field measurements of canopy microclimate (light, temperature, etc.) and hydrocarbon emission rates for stands of spruce, fir, and aspen in the Rocky Mountains, and white and black spruce in Canada. The study will evaluate measurements taken over two to three growing seasons. To allow adequate eddy correlation flux measurements at rates slower than 10 Hz, the project will use a relaxed eddy accumulator (REA) being developed in cooperation with the National Center for Atmospheric Research. Following collection of measurement data, standard leaf level temperature/light algorithms will be modified to address canopy level inputs and will be combined with land use data to produce and emission inventory. After validation of the canopy model, the results will be extended to larger scales using a transport model such as the EPA Regional Oxidant Model. Biogenic hydrocarbon emissions have a significant effect on tropospheric chemistry and accurate models of forest hydrocarbon emission are required to adequately understand regional ozone pollution and predict response of the atmosphere to future global change. This project will improve understanding of the factors that control non-methane hydrocarbon emissions at the forest canopy level, and will provide policymakers with the information necessary to assess the significance of biological hydrocarbon emissions.

Supplemental Keywords:

RFA, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Geographic Area, Ecological Indicators, State, Ecosystem Protection, Chemistry, Forestry, Ecology, Environmental Chemistry, Ecosystem/Assessment/Indicators, exploratory research environmental biology, Monitoring/Modeling, Ecological Effects - Environmental Exposure & Risk, Atmospheric Sciences, Southwest, Ecology and Ecosystems, predictive model, forest canopies, forest hydrocarbon emissions, Rocky Mountains, fir, canopy-level model, ecosystem, phenology model, hydrocarbon emissions, spruce, white spruce, forest canopy model, black spruce, modeling, chemical transport models, aspen, Colorado (CO), forest canopy

Progress and Final Reports:

  • 1996
  • 1997
  • 1998
  • 1999
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.