Grantee Research Project Results
Assessing the Effects of Multiple Stressors in Environmental Monitoring Programs
EPA Grant Number: R827953Title: Assessing the Effects of Multiple Stressors in Environmental Monitoring Programs
Investigators: Smith, Eric
Current Investigators: Smith, Eric , Ye, Keying
Institution: Virginia Tech
EPA Project Officer: Hahn, Intaek
Project Period: October 1, 1999 through September 30, 2002
Project Amount: $266,388
RFA: Environmental Statistics (1999) RFA Text | Recipients Lists
Research Category: Aquatic Ecosystems , Environmental Statistics , Human Health
Description:
Major goals of environmental data analysis are the assessment of the condition of the environment and the relationship between condition and potential stressors. Environmental stress occurs at different temporal and spatial scales.Approach:
Methods used to relate measures of environmental health and environmental information are typically based on regression or correlation analysis and include methods such as multiple regression analysis, canonical correlation analysis and canonical correspondence analysis. Typical data sets are large in terms of the number of variables used in the modeling process and it may be quite difficult to select amongst different competing models. This research will investigate the use of Bayesian analysis as a set of methods for interpreting the importance of relationships between stressors and environmental variables and for prediction under this model uncertainty. The approaches that will be used is based on Bayesian model averaging and Bayesian hierarchical modeling. The research will use multiple regression analysis to evaluate relationships between biological measures of health and chemical, physical, habitat and land use variables. Bayesian model averaging will be used to assess variable importance and to make inferences and predictions. Models based on canonical correspondence analysis and canonical discriminant analysis are commonly used in the assessment of environmental data. The research will also extend Bayesian model averaging to applications involving canonical correlation analysis, canonical correspondence analysis and canonical discriminant analysis.Expected Results:
The results of this research win aid ecological and environmental researchers trying to understand relationships between ecological and environmental measures of health and factors that influence these measures.Supplemental Keywords:
principal components analysis, correspondence analysis, canonical variate analysis, canonical correlation analysis, redundancy analysis, canonical correspondence analysis, stressor effects, ecological statistics., RFA, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Economic, Social, & Behavioral Science Research Program, Environmental Statistics, Mathematics, Ecological Indicators, Ecological Risk Assessment, Ecosystem Protection, Ecology, Ecosystem/Assessment/Indicators, Ecological Effects - Environmental Exposure & Risk, Applied Math & Statistics, Ecological Effects - Human Health, Ecology and Ecosystems, canonical correlative analysis, computer models, multiple stressors, aggregation, data analysis, Bayesian method, correlative analysis, ecological statistics, environmental risks, innovative statistical models, risk assessment, statistical methods, statistical models, co-pollutant effects, ecological exposure, data models, regression analysis, environmental stressor, environmental monitoring networksProgress and Final Reports:
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.