Grantee Research Project Results
Feasibility Study of a Pulse Combustor Combined NOx and SO2 Control Technique
EPA Contract Number: 68D00134Title: Feasibility Study of a Pulse Combustor Combined NOx and SO2 Control Technique
Investigators: Kelly, John T.
Small Business: Altex Technologies Corporation
EPA Contact: Richards, April
Phase: I
Project Period: September 1, 1990 through April 1, 1991
Project Amount: $49,526
RFA: Small Business Innovation Research (SBIR) - Phase I (1990) RFA Text | Recipients Lists
Research Category: SBIR - Air Pollution , Small Business Innovation Research (SBIR) , Air Quality and Air Toxics
Description:
Effective, low-cost and retrofittable combined NOx and S02 emission controls are needed to allow the widespread use of coal while not adversely impacting the environment. Reburning or In-Furnace NOx Reduction (IFNR) and Dry Sorbent Injection (DSI) are relatively economical and retrofittable NOx and SO2 control techniques. However, these techniques are restricted in application by the limited time within the furnace for injectant processing, dispersion, and reaction. The proposed Pulse Combustor NOx and SO2 Reduction (PCNSR) technique overcomes these limita- tions, by utilizing pulsating flow to optimally calcine the sorbent and gasify the coal prior to rapidly dispersing the sorbent and fuel in the furnace gases. PCNSR system, very, good NOx and SO2 control and burnout can be achieved for inexpensive limestone sorbent and coal reburning fuel. Because the device is simple and converts combustion energy directly to flow momentum, system costs are low.The purpose of this Phase I program is to demonstrate, by experimental and analytical means, combined NOx and SO2 reduction at lower costs using the PCNSR technique. In the Phase I effort, an existing pulse combustor test facility and sorbent capture and combustion computer models will be used to assess PCNSR system SO2 control, NOx reduction and burnout performance. The performance results will be combined with preliminary economic analyses to show the feasibility of the concept.
Supplemental Keywords:
Sustainable Industry/Business, RFA, Air, Scientific Discipline, Waste, Toxics, Hazardous, Chemical Engineering, Civil/Environmental Engineering, HAPS, Environmental Chemistry, Incineration/Combustion, Hazardous Waste, cleaner production/pollution prevention, air toxics, Environmental Engineering, incineration, combustion contaminants, clean technology, acid rain precursors, waste incineration, emissions, hazardous waste disposal, pollution prevention, Nox, air emissions, Nitrogen Oxides, emission controls, process optimization, acid deposition, hazardous waste incinerators, combustion byproducts, clean combustion, industrial technology, combustion, combustion technology, increased burn rate, nitrogen oxides (Nox), sulfur oxides, energy efficiency, contaminant management, pulsed combustion, cleaner production, hazardous waste incineration, industrial innovations, oxidation, acid rain, fugitive emissions, advanced treatment technologies, low Nox burnerProgress and Final Reports:
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.