Grantee Research Project Results
Indoor Air Biocontaminant Control by Means of Combined Electrically Enhanced Filtration and OAUGDP Plasma Sterilization
EPA Contract Number: 68D99025Title: Indoor Air Biocontaminant Control by Means of Combined Electrically Enhanced Filtration and OAUGDP Plasma Sterilization
Investigators: Helfritch, Dennis J.
Current Investigators: Kelly-Wintenberg, Kimberly
Small Business: Environmental Elements Corporation
Current Small Business: Atmospheric Glow Technologies
EPA Contact: Richards, April
Phase: II
Project Period: September 1, 1999 through September 1, 2001
Project Amount: $224,715
RFA: Small Business Innovation Research (SBIR) - Phase II (1999) Recipients Lists
Research Category: SBIR - Air Pollution , Small Business Innovation Research (SBIR) , Air Quality and Air Toxics
Description:
The filtration of pathogens from indoor air is hindered by two characteristics of the organisms: extremely small size and the ability to propagate. It is well known that the effective filtration of particles less than one micrometer is difficult. It also is known that the organisms captured by the filter can flourish on the filter surface and migrate through the filter, only to be reintroduced into the airstream.The use of electric fields and electric discharges can address these challenges. Enhancement of filter capture efficiency through the application of electrostatic fields is well established. Polarization effects brought about by a direct current (DC) electric field produce an attractive force between particles and filter fibers resulting in significantly enhanced filter efficiency, especially for small particles. The sterilization of surfaces through exposure to the University of Tennessee's One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been demonstrated to be very effective. Microbe destruction occurs through attack by atomic oxygen and oxygen radicals created by the plasma.
Thin electrodes, attached to both sides of a filter, yield enhanced capture efficiency when a DC voltage is applied across these electrodes. Furthermore, periodic radio frequency alternating current energization of the electrodes generates a plasma on the filter surface that kills captured organisms. This project demonstrates these effects by constructing and operating such a filter.
Infectious disease takes a tremendous toll on people and on the U.S. economy. The causes of many of these diseases are airborne pathogens. For example, in 1994 there were more than 90 million cases of influenza nationwide resulting in 170 million bed days. This led to more than 69 million work-loss days and $13.2 billion of lost earnings.
A Phase I program has shown that the field-enhanced plasma-sterilized filter will effectively capture and kill airborne microorganisms at reasonable energy use. It is anticipated that the filter will represent a solution for the problem of indoor air pathogens for both public and private buildings.
Supplemental Keywords:
small business, SBIR, indoor air, engineering, chemistry, EPA., RFA, Air, Scientific Discipline, Chemical Engineering, Chemistry, particulate matter, Environmental Chemistry, Engineering, Chemistry, & Physics, tropospheric ozone, indoor air, Biochemistry, air toxics, Environmental Engineering, biofilter , aerosol particles, air quality, biocontaminants, indoor air quality, filtration technology, biofilter, aerosol, ambient submicron particles, biofiltration systems, stratospheric ozone, filtration, bacteria filtration, OAUGDP, plasma filter, particulate exposure, particulates, electrostatic removal, electrically enhanced filtration, plasma sterilization, ambient air, biocontaminant control, air pollutants, air pollution, ambient pollution control, ambient air quality, indoor air chemistryProgress and Final Reports:
SBIR Phase I:
Indoor Air Biocontaminant Control by Means of Combined Electrically Enhanced Filtration and OAUGDP Plasma Sterilization | 1999 Progress Report | Final ReportThe perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.