Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Sustainable Anticorrosive Self-Healing Smart Coatings for Metal Protection

EPA Grant Number: SU835991
Title: Sustainable Anticorrosive Self-Healing Smart Coatings for Metal Protection
Investigators: Wei, Suying
Institution: Lamar University
EPA Project Officer: Page, Angela
Phase: I
Project Period: September 1, 2015 through August 31, 2016
Project Amount: $15,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet (2015) RFA Text |  Recipients Lists
Research Category: Pollution Prevention/Sustainable Development , P3 Challenge Area - Chemical Safety , P3 Awards , Sustainable and Healthy Communities

Objective:

Metal corrosions have caused serious monetary losses to global economies. Existing anticorrosion coating technologies rely heavily on fast-depleting petroleum-based chemicals. Meanwhile, the volatile organic solvents employed during the coating manufacturing procedures and the resulted non-degradable and/or toxic polymer wastes have caused increasing concerns over both health and the environment. To address this challenge, the objective of this project is to design and synthesize sustainable and green smart anticorrosive coating systems with self-healing and feed-back properties using linseed oil (LO) monomers that are benign and abundant in nature as the raw materials.

Approach:

In the project, LO monomers will serve as the polymerizable healing core materials as well as the coating matrixes and microcontainers. The microcapsules containing LO monomers will then be dispersed in the coating matrix to obtain the smart coating system. An excellent compatibility between the coating matrix and the microcapsules are expected considering the chemical bonds formed between the functional groups of the former and the latter. This will ensure a uniform distribution of the microcapsules in the coating matrix and good mechanical strength of the coating. An approaching crack ruptures microcapsules embedded in the coating matrix, releasing the healing agent of LO monomers into the crack plane through capillary action. Oxidative polymerization of LO monomers will be triggered by contact with atmospheric oxygen and the cracks will be filled by the resulting polymer films. The damage induced triggering mechanism will provide site-specific autonomic control of repair.

Expected Results:

The smart coating system with four types of coating matrixes will be achieved. The coating systems are envisioned to provide industries with non-toxic, biodegradable, eco-friendly, and cost-effective smart coatings for a sustainable development. This project will minimize hazardous chemicals released to the environment by the selection of benign and sustainable raw materials and appropriate manufacturing procedures. Meanwhile, the bio-degradability of the ecofriendly polymeric coating systems will reduce marine pollution and air pollution caused by non-degradable polymer wastes and the incinerating of the wastes.

Publications and Presentations:

Publications have been submitted on this project: View all 1 publications for this project

Supplemental Keywords:

Renewable resources, Green chemistry, Toxic use reduction

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    1 publications for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.