Air Pollutants: Cardiovascular Effects and Mechanisms

EPA Grant Number: R831918
Title: Air Pollutants: Cardiovascular Effects and Mechanisms
Investigators: Bonham, Ann , Pinkerton, Kent E. , Kleeman, Michael J. , Horwitz, Barbara , Chen, Chao-Yin , Chiamvimonvat, Nipavan
Current Investigators: Bonham, Ann
Institution: University of California - Davis
EPA Project Officer: Chung, Serena
Project Period: August 1, 2004 through July 31, 2008 (Extended to July 31, 2009)
Project Amount: $1,510,000
RFA: The Role of Air Pollutants in Cardiovascular Disease (2003) RFA Text |  Recipients Lists
Research Category: Airborne Particulate Matter Health Effects , Health Effects , Air


Epidemiological studies link exposure to airborne particulates with mass aerodynamic diameter £2.5 m (PM2.5) and cardiovascular consequences including ventricular arrhythmias and sudden cardiac death. The causes are poorly understood, but reduced heart rate variability (HRV) is particularly compelling since it is an index of impaired cardiac vagal regulation and is associated with increased susceptibility to ventricular arrhythmias and sudden death. Moreover, the elderly appear to be particularly susceptible. The challenge is to link the epidemiological findings to causes and mechanisms. Toward that end, we propose to test three hypotheses: 1) that exposure (3, 7, 14, and 28 days) to ambient air pollutants reduces HRV by causing neuroplasticity in the intrinsic or synaptic excitability of cardiac vagal neurons in the nucleus ambiguous (NA) which control HRV; 2) that the decreased HRV and mechanisms are different in summer vs. winter due to season-dependent particulate composition; and 3) that the decreased HRV and mechanisms are exaggerated in the elderly.


We will test the hypotheses by five objectives, using state-of-the-art inhalation facilities to deliver environmentally relevant and comprehensively characterized “real world” particulate pollutants in the form of concentrated ambient air particles (CAPs) of the PM2.5 fraction to a mouse model shown to exhibit reduced HRV in response to indoor air PM2.5 exposure. Mice of median age 3-4 months (age equivalent to young adult humans) and of 26-28 months (age equivalent to elderly humans) will be exposed to one of the following: CAPs PM2.5 in summer (when motor vehicle exhaust contributes 43% and wood smoke contributes 1% to total PM2.5); filtered air (FA) as a summer control group; CAPs PM2.5 in winter (when vehicle exhaust contributes 22 % and wood smoke 21%) and FA as a winter control group. Mice will be studied after 3, 7, 24, and 28 days exposures. Objective 1 will determine if PM2.5 exposure reduces HRV, by quantifying overall 24-h HRV, diurnal changes in HRV, and heart rate recovery following an acute stressor (exercise) in conscious, freely moving mice. Objectives 2 and 3 will use patch clamping to determine if the PM2.5 exposure-induced decrease in HRV is mediated by decreased intrinsic excitability of NA cardiac vagal neurons through changes in specific potassium channel conductances. Objectives 4 and 5 will determine if the PM2.5 exposure-induced decrease in HRV is mediated by decreased synaptic excitability via enhanced inhibitory ( -aminobutyric acid) and/or reduced excitatory (glutamatergic) mechanisms.

Expected Results:

The results should provide a model and mechanisms for cardiovascular consequences to air pollution and should improve public awareness of PM2.5.

Publications and Presentations:

Publications have been submitted on this project: View all 13 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 2 journal articles for this project

Supplemental Keywords:

ambient air, biology, exposure, particulates, sensitive populations, voltage-clamping, heart rate variability analysis, West, RFA, Health, Scientific Discipline, Air, particulate matter, Toxicology, Environmental Chemistry, Health Risk Assessment, Risk Assessments, Biochemistry, ambient aerosol, lung injury, long term exposure, lung disease, acute cardiovascular effects, airway disease, cardiovascular vulnerability, airborne particulate matter, ambient particle health effects

Progress and Final Reports:

  • 2005 Progress Report
  • 2006 Progress Report
  • 2007 Progress Report
  • 2008 Progress Report
  • Final Report