A Shallow-water Coastal Habitat Model for Regional Scale Evaluation of Management Decisions in the Virginian Province

EPA Grant Number: R830878
Title: A Shallow-water Coastal Habitat Model for Regional Scale Evaluation of Management Decisions in the Virginian Province
Investigators: Gallegos, Charles L. , Jordan, Thomas E. , Megonigal, J. P. , Neale, Patrick J. , Weller, Donald E.
Institution: Smithsonian Environmental Research Center
EPA Project Officer: Hahn, Intaek
Project Period: June 1, 2003 through September 30, 2007
Project Amount: $746,433
RFA: Developing Regional-Scale Stressor-Response Models for Use in Environmental Decision-making (2002) RFA Text |  Recipients Lists
Research Category: Ecological Indicators/Assessment/Restoration , Ecosystems , Global Climate Change


Management decisions to protect estuaries are being made in a context in which unprecedented environmental changes are taking place. For example, increasing intensity of ultraviolet (UV) radiation, especially the damaging UV-B, has been documented and is expected to continue even at temperate latitudes. The carbon dioxide concentration of the atmosphere rose by 30% in the 20th century and is continuing to climb at a rate of about 1% per year. The effects of CO2 and other greenhouse gasses on global climate change are highly uncertain, but alteration of rainfall and runoff patterns are considered likely. Interactions between altered flow regimes and changes in land use patterns will have consequences for the delivery of sediments and nutrients to estuaries. Projecting the efficacy of management actions must proceed on the basis of predictions from mathematical models, since experimental manipulations cannot be made on the relevant scales. However, the effects of simultaneous, multiple stressors have not previously been incorporated into models of ecosystem processes.


Our modeling efforts will focus on shallow tributary embayments and small tidal creeks of Chesapeake Bay. This emphasis reflects our belief that the ecological importance of shallow systems far exceeds their volumetric contribution to the bay. Their importance derives from the many hectares of potential habitat for SAV created by their highly indented shorelines, and from their role as spawning and nursery grounds for finfish and as refuge habitat for juvenile fish and crabs. The end points for our model will be those indicators being used as de-listing criteria for Chesapeake Bay, namely chlorophyll, water clarity (diffuse attenuation coefficient) and dissolved oxygen.

Expected Results:

We conceive of shallow sub-estuaries as part of a continuum of aquatic ecosystems linking watersheds with coastal marine waters. We will represent shallow sub-estuaries as well-mixed compartments that receive and process inputs from their local watershed and exchange materials at their seaward boundaries. Mass balance modeling techniques will be employed for the model structure, with rate processes dependent upon interactions amongst stressors. The stressor interactions that we will incorporate vary through the coastal landscape. In the watershed, we will consider interactions between climate-induced flow alteration with changes in land use, as they impact delivery of nutrients and sediments to the estuary. In wetlands we will consider the interactions between rising CO2 and wetland distribution on delivery of dissolved organic matter. In the estuary we will model interactions amongst nutrients, sediments, dissolved organic matter, and UV-B on plankton growth and light penetration. We will use a Monte Carlo approach that will facilitate investigation of alternative management scenarios, and predict cumulative distribution functions of the de-listing criteria for comparison with reference curves currently under development.

Publications and Presentations:

Publications have been submitted on this project: View all 23 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 4 journal articles for this project

Supplemental Keywords:

ecological effects; marine science; estuary; modeling; ecology; hydrology; Chesapeake Bay., RFA, Scientific Discipline, Air, Geographic Area, Ecosystem Protection/Environmental Exposure & Risk, climate change, Air Pollution Effects, State, Monitoring/Modeling, Regional/Scaling, Environmental Monitoring, Ecological Risk Assessment, Atmosphere, anthropogenic stress, coastal ecosystem, aquatic species vulnerability, biodiversity, environmental measurement, ecosystem assessment, meteorology, climatic influence, Virginia (VA), global change, anthropogenic, climate models, UV radiation, greenhouse gases, environmental stress, coastal ecosystems, plankton, water quality, ecological models, climate model, Global Climate Change, land use, regional anthropogenic stresses, atmospheric chemistry, stressor response model, climate variability

Progress and Final Reports:

  • 2003 Progress Report
  • 2004 Progress Report
  • 2005
  • 2006
  • Final Report