2001 Progress Report: Quantifying Exposure Error and its Effect on Epidemiological Studies

EPA Grant Number: R827353C002
Subproject: this is subproject number 002 , established and managed by the Center Director under grant R827353
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: EPA Harvard Center for Ambient Particle Health Effects
Center Director: Koutrakis, Petros
Title: Quantifying Exposure Error and its Effect on Epidemiological Studies
Investigators: Suh, Helen H.
Current Investigators: Suh, Helen H. , Zanobetti, Antonella , Sarnat, Jeremy , Schwartz, Joel
Institution: Harvard University
EPA Project Officer: Chung, Serena
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
Project Period Covered by this Report: June 1, 2001 through May 31, 2002
Project Amount: Refer to main center abstract for funding details.
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air


The overall objective of this theme is to improve our ability to characterize air pollutant exposures for health effects studies. This project is one of three research studies proposed under Theme I: Assessing Particle Exposures for Health Effects Studies that were based on personal, indoor, and outdoor particulate and gas concentrations, measured as part of our previous or current exposure studies. This project was intended to address Particulate Matter Research Topic 10, Analysis and Measurement, identified by the National Research Council. The main objective of this project is to quantify exposure error and to investigate its effect on the observed associations between exposure and health outcome.

Progress Summary:

During this past year, we have continued our research examining the impact of exposure-related factors on risk estimates from time-series studies of PM10 and hospital admissions. In a paper published last year, we used data from 14 cities located across the United States to examine the relationship between air conditioning prevalence and the coefficient for the relationship between ambient PM10 concentrations and cause-specific hospital admissions (Jannsen, Schwartz, et al., 2002). In addition, we examined whether observed variability in the risk coefficients was specifically related to PM10 emissions from mobile, combustion, and other sources. Results from this study indicate that air conditioning use explains a substantial amount of the variability in the risk coefficients from the different cities. Furthermore, PM10 emissions from mobile and diesel sources were also found to be important determinants of the variability in the risk coefficients, particularly for cardiovascular disease (CVD) related hospital admissions. To validate these findings, we are currently using the same data to examine whether ventilation and source emission profiles explain season-specific risks of PM10 on hospital admissions in each of these 14 cities.

We are collaborating with Drs. Edie Weller and Donna Spiegelman in a reanalysis of indoor NO2 and PM2.5 measurements in the homes of approximately 1,500 children, collected as part of the Six Cities Study in the mid-1980s. This reanalysis is applying advanced statistical methods to produce unbiased, efficient point and interval estimates of effects of these indoor exposures on respiratory health of children in the presence of measurement error and misclassification of environmental exposures.

Future Activities:

The analysis examining whether ventilation and source emission profiles explain season-specific risks of PM is nearly complete, with a paper expected to be completed for submission this year.

Journal Articles on this Report : 1 Displayed | Download in RIS Format

Other subproject views: All 3 publications 3 publications in selected types All 3 journal articles
Other center views: All 200 publications 198 publications in selected types All 197 journal articles
Type Citation Sub Project Document Sources
Journal Article Janssen NAH, Schwartz J, Zanobetti A, Suh HH. Air conditioning and source-specific particles as modifiers of the effect of PM10 on hospital admissions for heart and lung disease. Environmental Health Perspectives 2002;110(1):43-49. R827353 (Final)
R827353C002 (2000)
R827353C002 (2001)
R827353C002 (2002)
R827353C002 (2003)
R827353C002 (Final)
  • Full-text from PubMed
  • Abstract from PubMed
  • Full-text: ResearchGate-Abstract and PDF
  • Supplemental Keywords:

    exposure, particulate, particulate matter, PM, epidemiological, cardiovascular disease, CVD, air conditioning, mobile, combustion., RFA, Health, Scientific Discipline, Air, particulate matter, Toxicology, air toxics, Environmental Chemistry, Epidemiology, Risk Assessments, Susceptibility/Sensitive Population/Genetic Susceptibility, Environmental Microbiology, genetic susceptability, indoor air, tropospheric ozone, Molecular Biology/Genetics, Biology, ambient air quality, health effects, interindividual variability, molecular epidemiology, monitoring, particulates, risk assessment, sensitive populations, chemical exposure, air pollutants, cardiopulmonary responses, health risks, human health effects, indoor exposure, stratospheric ozone, ambient air monitoring, exposure and effects, ambient air, ambient measurement methods, exposure, pulmonary disease, developmental effects, epidemelogy, respiratory disease, air pollution, ambient monitoring, Human Health Risk Assessment, particle exposure, biological mechanism , cardiopulmonary response, human exposure, inhalation, pulmonary, particulate exposure, ambient particle health effects, mortality studies, inhaled, PM, atmospheric monitoring, human susceptibility, inhalation toxicology, cardiopulmonary, indoor air quality, inhaled particles, human health, measurement methods , quantifying exposure error, air quality, cardiovascular disease, dosimetry, human health risk, metals, respiratory, measurement methods, genetic susceptibility

    Relevant Websites:

    http://www.hsph.harvard.edu/epacenter Exit

    Progress and Final Reports:

    Original Abstract
  • 1999 Progress Report
  • 2000 Progress Report
  • 2002 Progress Report
  • 2003 Progress Report
  • 2004
  • Final Report

  • Main Center Abstract and Reports:

    R827353    EPA Harvard Center for Ambient Particle Health Effects

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R827353C001 Assessing Human Exposures to Particulate and Gaseous Air Pollutants
    R827353C002 Quantifying Exposure Error and its Effect on Epidemiological Studies
    R827353C003 St. Louis Bus, Steubenville and Atlanta Studies
    R827353C004 Examining Conditions That Predispose Towards Acute Adverse Effects of Particulate Exposures
    R827353C005 Assessing Life-Shortening Associated with Exposure to Particulate Matter
    R827353C006 Investigating Chronic Effects of Exposure to Particulate Matter
    R827353C007 Determining the Effects of Particle Characteristics on Respiratory Health of Children
    R827353C008 Differentiating the Roles of Particle Size, Particle Composition, and Gaseous Co-Pollutants on Cardiac Ischemia
    R827353C009 Assessing Deposition of Ambient Particles in the Lung
    R827353C010 Relating Changes in Blood Viscosity, Other Clotting Parameters, Heart Rate, and Heart Rate Variability to Particulate and Criteria Gas Exposures
    R827353C011 Studies of Oxidant Mechanisms
    R827353C012 Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
    R827353C013 Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) Study
    R827353C014 Identifying the Physical and Chemical Properties of Particulate Matter Responsible for the Observed Adverse Health Effects
    R827353C015 Research Coordination Core
    R827353C016 Analytical and Facilities Core
    R827353C017 Technology Development and Transfer Core