Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-\textit{p}-Dioxin (TCDD) and Related Compounds

Part III: Integrated Summary and Risk Characterization for 2,3,7,8-Tetrachlorodibenzo-\textit{p}-Dioxin (TCDD) and Related Compounds

NOTICE

THIS DOCUMENT IS A PRELIMINARY DRAFT. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. It is being circulated for comment on its technical accuracy and policy implications.

National Center for Environmental Assessment
Research and Development
U.S. Environmental Protection Agency
Washington, DC
DISCLAIMER

This document is a draft for review purposes only and does not constitute U.S. Environmental Protection Agency policy. It has been provided for review to the National Academy of Sciences (NAS). While the NAS review is being conducted and until a final agency assessment has been released, the draft dioxin reassessment (2003 version or other draft versions) remains draft, does not represent a final position, and is not intended to serve as the basis or rationale for regulatory and other policy action. However, EPA will continue its work to reduce human exposure to dioxin.

While the NAS review is underway and no final reassessment has been issued, in meeting their regulatory responsibilities, the agency will continue its current practice of utilizing the best available data that meet the EPA Information Quality Guidelines and the government-wide Information Quality Guidelines issued by OMB. The Agency will consider all such data and associated uncertainty to determine the strength of the evidence in proposing regulatory actions related to dioxin and dioxin-like compounds.
Exposure and Human Health Reassessment
of 2,3,7,8-Tetrachlorodibenzo-\(p\)-Dioxin (TCDD)
and Related Compounds

TABLE OF CONTENTS—OVERVIEW

Part I: Estimating Exposure to Dioxin-Like Compounds (Draft Final)

Volume 1: Sources of Dioxin-Like Compounds in the United States
Chapters 1 through 13

Volume 2: Properties, Environmental Levels, and Background Exposures
Chapters 1 through 6

Volume 3: Site-Specific Assessment Procedures
Chapters 1 through 8

Part II: Health Assessment for 2,3,7,8-Tetrachlorodibenzo-\(p\)-dioxin (TCDD) and Related Compounds

Chapter 1. Disposition and Pharmacokinetics
Chapter 2. Mechanism(s) of Actions
Chapter 3. Acute, Subchronic, and Chronic Toxicity
Chapter 4. Immunotoxicity
Chapter 5. Developmental and Reproductive Toxicity
Chapter 6. Carcinogenicity of TCDD in Animals
Chapter 7. Epidemiology/Human Data
Chapter 8. Dose-Response Modeling for 2,3,7,8-TCDD
Chapter 9. Toxic Equivalency Factors (TEF) for Dioxin and Related Compounds

Part III: Integrated Summary and Risk Characterization for 2,3,7,8-Tetrachlorodibenzo-\(p\)-Dioxin (TCDD) and Related Compounds
CONTENTS

LIST OF TABLES ... vii
LIST OF FIGURES .. ix
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS x
AUTHORS ... xiii

1. INTRODUCTION ... 1-1
 1.1. DEFINITION OF DIOXIN-LIKE COMPOUNDS 1-3
 1.2. TOXIC EQUIVALENCY FACTORS 1-5
 1.3. UNDERSTANDING EXPOSURE/DOSE RELATIONSHIPS FOR
 DIOXIN-LIKE COMPOUNDS .. 1-10
 1.3.1. Administered Dose .. 1-12
 1.3.2. Area Under the Curve .. 1-13
 1.3.3. Plasma or Tissue Concentrations 1-15
 1.3.4. Steady-State Body Burdens 1-16
 1.3.5. Mechanistic Dose Metrics 1-17
 1.3.6. Summary .. 1-17

2. EFFECTS SUMMARY ... 2-1
 2.1. BIOCHEMICAL RESPONSES ... 2-3
 2.2. ADVERSE EFFECTS IN HUMANS AND ANIMALS 2-7
 2.2.1. Cancer ... 2-7
 2.2.1.1. Epidemiologic Studies 2-7
 2.2.1.2. Animal Carcinogenicity 2-14
 2.2.1.3. Plausible Mode(s) of Carcinogenic Action 2-17
 2.2.1.4. Other Data Related to Carcinogenesis 2-20
 2.2.1.5. Cancer Hazard Characterization 2-21
 2.2.2. Reproductive and Developmental Effects 2-23
 2.2.2.1. Human Effects ... 2-23
 2.2.2.2. Experimental Animal Effects 2-26
 2.2.2.3. Other Data Related to Developmental and
 Reproductive Effects .. 2-30
 2.2.2.4. Developmental and Reproductive Effects Hazard
 Characterization .. 2-31
 2.2.3. Immunotoxicity .. 2-33
 2.2.3.1. Epidemiologic Findings 2-33
 2.2.3.2. Animal Findings .. 2-34
 2.2.3.3. Other Data Related to Immunologic Effects 2-35
 2.2.3.4. Immunologic Effects Hazard Characterization 2-36
CONTENTS (continued)

2.2.4. Chloracne ... 2-37
2.2.5. Diabetes ... 2-39
2.2.6. Other Effects ... 2-40
 2.2.6.1. Elevated GGT .. 2-40
 2.2.6.2. Thyroid Function 2-41
 2.2.6.3. Cardiovascular Disease 2-42
 2.2.6.4. Oxidative Stress 2-43

3. MECHANISMS AND MODE OF DIOXIN ACTION 3-1
 3.1. MODE VERSUS MECHANISM OF ACTION 3-2
 3.2. GENERALIZED MODEL FOR DIOXIN ACTION 3-3
 3.2.1. The Receptor Concept 3-3
 3.2.2. A Framework to Evaluate Mode of Action 3-6
 3.2.3. Mechanistic Information and Mode of Action—Implications for Risk Assessment ... 3-6

4. EXPOSURE CHARACTERIZATION ... 4-1
 4.1. SOURCES .. 4-1
 4.1.1. Inventory of Releases 4-3
 4.1.2. General Source Observations 4-6
 4.2. ENVIRONMENTAL FATE .. 4-10
 4.3. ENVIRONMENTAL MEDIA AND FOOD CONCENTRATIONS 4-12
 4.4. BACKGROUND EXPOSURES ... 4-15
 4.4.1. Tissue Levels ... 4-15
 4.4.2. Intake Estimates .. 4-18
 4.4.3. Variability in Intake Levels 4-19
 4.5. POTENTIALLY HIGHLY EXPOSED POPULATIONS OR DEVELOPMENTAL STAGES ... 4-20

5. DOSE-RESPONSE CHARACTERIZATION 5-1
 5.1. DOSE METRIC(S) .. 5-4
 5.1.1. Calculations of Effective Dose 5-8
 5.2. EMPIRICAL MODELING OF INDIVIDUAL DATA SETS 5-9
 5.2.1. Cancer ... 5-11
 5.2.1.1. Estimates of Slope Factors and Risk at Current Background Body Burdens Based on Human Data 5-19
 5.2.1.2. Estimates of Slope Factors and Risk at Current Background Body Burdens Based on Animal Data 5-20
 5.2.1.3. Estimates of Slope Factors and Risk at Current Background Body Burdens Based on a Mechanistic Model 5-22
LIST OF TABLES

1-1. The toxic equivalency factor (TEF) scheme for I-TEQ\textsubscript{DF} ... 1-19
1-2. The toxic equivalency factor (TEF) scheme for TEQ\textsubscript{DFP-WHO}\textsubscript{94} 1-19
1-3. The toxic equivalency factor (TEF) scheme for TEQ\textsubscript{DFP-WHO}\textsubscript{98} 1-20
1-4. The range of the in vivo relative potency estimates (REP) values for the major TEQ contributors ... 1-21
1-5. Comparison of administered dose and body burden in rats and humans 1-22
2-1. Effects of TCDD and related compounds in different animal species 2-44
2.2. Some biochemical response to TCDD .. 2-45
2-3. Summary of the combined cohort and selected industrial cohort studies with high exposure levels, as described by IARC (1997) 2-46
2-4. Tumor incidence and promotion data cited for the TEF-WHO\textsubscript{98} for principal congeners ... 2-47
3-1. Early molecular events in response to dioxin ... 3-15
4-1. Confidence rating scheme ... 4-25
4-2. Inventory of environmental releases (grams/year) of TEQ\textsubscript{DFP-WHO}\textsubscript{98} in the United States ... 4-26
4-3. Sources that are currently unquantifiable (Category E) 4-30
4-4. Summary of North American CDD/CDF and PCB TEQ-WHO\textsubscript{98} levels in environmental media and food .. 4-31
4-5. Background serum levels in the United States 1995–1997 4-33
4-6. Adult contact rates and background intakes of dioxin-like compounds 4-34
4-7. Variability in average daily toxic equivalent (TEQ) intake as a function of age 4-35
LIST OF TABLES (continued)

5-1. Peak serum dioxin levels in the background population and epidemiological cohorts .. 5-31

5-2. Published cancer epidemiology and bioassay data in dose-response formulae .. 5-34

5-3. All cancer risk in humans through age 75 .. 5-36

5-4. Summary of all site cancer ED\(_{01}\) and slope factor calculations 5-37

5-5. Doses yielding 1% excess risk (95% lower confidence bound) based upon 2-year animal carcinogenicity studies using simple multistage (Portier et al., 1984) models ... 5-38

5-6. Body burdens for critical endpoints in animals with human equivalent daily intake .. 5-39
LIST OF FIGURES

1-1. Chemical structure of 2,3,7,8-TCDD and related compounds. 1-23

2-1. Cellular mechanism for AhR action. ... 2-48

4-1. Estimated CDD/CDF I-TEQ emissions to air from combustion sources in the United States, 1995. ... 4-36

4-2. Comparison of estimates of annual I-TEQ emissions to air (grams I-TEQ/yr) for reference years 1987 and 1995. .. 4-37

4-3. Blood levels (I-TEQ for CDD/CDF + WHO94) versus age of a subset of participants in the CDC (2000). ... 4-38

4-4. Predicted distributions and average TEQ_{DF} - WHO98 concentrations within an adult population for four years: 1965, 1985, 1995, and 2030. 4-39

4-5. Demonstration of the model for evaluating impacts on lipid concentrations (A) and body burdens (B) of infants resulting from various nursing scenarios during a lifetime. .. 4-40

5-1. Comparison of lifetime average body burden and area under the curve in hypothetical background and occupational scenarios. 5-41

5-2. Peak dioxin body burden levels in background populations and epidemiological cohorts (back-calculated) ... 5-42
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>aryl hydrocarbon</td>
</tr>
<tr>
<td>AHF</td>
<td>altered heptacellular foci</td>
</tr>
<tr>
<td>AhR</td>
<td>aryl hydrocarbon receptor</td>
</tr>
<tr>
<td>ALK</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>Arnt</td>
<td>aryl hydrocarbon receptor nuclear translocator</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>BaP</td>
<td>benzo[a]pyrene</td>
</tr>
<tr>
<td>BDD</td>
<td>brominated dibenzodioxin</td>
</tr>
<tr>
<td>BDF</td>
<td>polybrominated dibenzofuran</td>
</tr>
<tr>
<td>BMD</td>
<td>benchmark dose</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CDD</td>
<td>chlorinated dibenzodioxin</td>
</tr>
<tr>
<td>CFD</td>
<td>chlorinated dibenzofuran</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CTL</td>
<td>cytotoxic T lymphocyte</td>
</tr>
<tr>
<td>CYP1A1</td>
<td>cytochrome P4501A1 enzyme</td>
</tr>
<tr>
<td>CYP1A2</td>
<td>cytochrome P4501A2 enzyme</td>
</tr>
<tr>
<td>CYP1B1</td>
<td>cytochrome P4501B1 enzyme</td>
</tr>
<tr>
<td>DFP</td>
<td>dioxins, furans, PCBs</td>
</tr>
<tr>
<td>DEN</td>
<td>diethylnitrosamine</td>
</tr>
<tr>
<td>DHT</td>
<td>5α-dihydrotestosterone</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ED</td>
<td>effective dose</td>
</tr>
<tr>
<td>ED_{0.01}</td>
<td>effective dose at the 1% response level</td>
</tr>
<tr>
<td>EDC/VC</td>
<td>ethylene dichloride/vinyl chloride</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GD</td>
<td>gestation day</td>
</tr>
<tr>
<td>GGT</td>
<td>gamma glutamyl transferase</td>
</tr>
<tr>
<td>HAH</td>
<td>halogenated aromatic hydrocarbons</td>
</tr>
<tr>
<td>HCDD</td>
<td>hexachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>HIF</td>
<td>hypoxia-inducible factor</td>
</tr>
<tr>
<td>HpCDD</td>
<td>heptachlorodibenzo-p-dioxin</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS (continued)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>hairless</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>ID</td>
<td>immunosuppressive dose</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>I-P</td>
<td>initiation-promotion</td>
</tr>
<tr>
<td>IPCS</td>
<td>International Programme on Chemical Safety (WHO)</td>
</tr>
<tr>
<td>I-TEQ</td>
<td>international TEF scheme adopted by EPA in 1989</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>LABB</td>
<td>lifetime average body burden</td>
</tr>
<tr>
<td>LED<sub>0.1</sub></td>
<td>lower bound of the effective dose at the 1% response level</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LMS</td>
<td>linearized multistage</td>
</tr>
<tr>
<td>LOAEL</td>
<td>lowest-observed-adverse-effect level</td>
</tr>
<tr>
<td>MOE</td>
<td>margin of exposure</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>MRL</td>
<td>minimal risk level (ATSDR)</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHATS</td>
<td>National Human Adipose Tissue Survey</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>NTP</td>
<td>National Toxicology Program</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no-observed-adverse-effect level</td>
</tr>
<tr>
<td>NOEL</td>
<td>no-observed-effect level</td>
</tr>
<tr>
<td>OCDD</td>
<td>octachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>pg</td>
<td>picogram</td>
</tr>
<tr>
<td>PAH</td>
<td>polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PBPK</td>
<td>physiologically based pharmacokinetic</td>
</tr>
<tr>
<td>PBDD</td>
<td>polybrominated dibenzodioxin</td>
</tr>
<tr>
<td>PBDF</td>
<td>polybrominated dibenzofuran</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCDD</td>
<td>polychlorinated dibenzodioxin</td>
</tr>
<tr>
<td>PCDF</td>
<td>polychlorinated dibenzofuran</td>
</tr>
<tr>
<td>PCP</td>
<td>pentachlorophenol</td>
</tr>
<tr>
<td>PCQ</td>
<td>polychlorinated quaterphenyl</td>
</tr>
<tr>
<td>PeCDD</td>
<td>pentachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>PeCDF</td>
<td>pentachlorodibenzo-p-furan</td>
</tr>
<tr>
<td>PK</td>
<td>pharmacokinetic</td>
</tr>
<tr>
<td>POD</td>
<td>point of departure</td>
</tr>
<tr>
<td>POTW</td>
<td>publicly-owned treatment works</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS (continued)

ppt part per trillion
PVC polyvinyl chloride
REP relative potency
RfD reference dose (EPA)
RR relative risk
SAB U.S. EPA’s Science Advisory Board
SMR standardized mortality ratio
SRBC sheep red blood cells
2,4,5-T 2,4,5-trichlorophenoxyacetic acid
TDG thyroid binding globulin
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TCP trichlorophenol
TDI tolerable daily intake
TEF toxic equivalency factor
TEQ toxic equivalent
TEQ-WHO94 1994 WHO extension of the I-TEF scheme to include 13 dioxin-like PCBs
TEQ-WHO98 1998 WHO update to the previously established TEFs for dioxins, furans, and dioxin-like PCBs
TPA tetradecanoyl phorbol acetate
TNP-LPS trinitrophenyl-lipopolysaccharide
TSH thyroid stimulating hormone
URL unit risk level
WHO World Health Organization

~ approximately
> greater than
< less than
≥ greater than or equal to
≤ less than or equal to
µg microgram
AUTHORS

William H. Farland
Acting Deputy Assistant Administrator for Science
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC

Linda S. Birnbaum
Director
Experimental Toxicology Division
National Health and Environmental Effects Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina

David H. Cleverly
Exposure Analysis and Risk Characterization Group
National Center for Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC

Michael J. DeVito
Chief, Pharmacokinetics Branch
Experimental Toxicology Division
National Health and Environmental Effects Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina

Matthew N. Lorber
Exposure Analysis and Risk Characterization Group
National Center for Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC

Bruce D. Rodan
Medical Officer (Research)/Senior Health Scientist
National Center for Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC

12/23/03
AUTHORS (continued)

John L. Schaum
Environmental Engineer
Immediate Office of the Division Director-Washington
National Center for Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC

Linda C. Tuxen
Special Assistant
National Center for Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency
Washington, DC

Dwain L. Winters
Director
Dioxin Policy Project
Office of Pollution Prevention and Toxics
Office of Prevention, Pesticides, and Toxic Substances
U.S. Environmental Protection Agency
Washington, DC