TOXICOLOGICAL REVIEW

OF

TRICHLOROETHYLENE

APPENDICES

(CAS No. 79-01-6)

In Support of Summary Information on the Integrated Risk Information System (IRIS)

September 2011
CONTENTS of TOXICOLOGICAL REVIEW for TRICHLOROETHYLENE
Appendices
(CAS No. 79-01-6)

TOXICOLOGICAL REVIEW OF TRICHLOROETHYLENE APPENDICES i
CONTENTS of TOXICOLOGICAL REVIEW for TRICHLOROETHYLENE

Appendices .. ii
LIST OF TABLES .. xiii
LIST OF FIGURES ... xviii

A. PBPK MODELING OF TCE AND METABOLITES—DETAILED METHODS
AND RESULTS .. A-1

A.1. THE HIERARCHICAL BAYESIAN APPROACH TO CHARACTERIZING
PBPK MODEL UNCERTAINTY AND VARIABILITY .. A-1

 A.2.1. Convergence .. A-4
 A.2.2. Evaluation of Posterior Distributions for Population Parameters A-5
 A.2.3. Comparison of Model Predictions With Data.................................... A-7
 A.2.3.1. Mouse Model .. A-8
 A.2.3.2. Rat Model .. A-15
 A.2.3.3. Human Model ... A-23

A.3. PRELIMINARY ANALYSIS OF MOUSE GAS UPTAKE DATA:
 MOTIVATION FOR MODIFICATION OF RESPIRATORY METABOLISM A-32

A.4. DETAILS OF THE UPDATED PBPK MODEL FOR TCE AND ITS
 METABOLITES ... A-38
 A.4.1. PBPK Model Structure and Equations.. A-38
 A.4.1.1. TCE Submodel ... A-50
 A.4.1.2. TCOH Submodel .. A-55
 A.4.1.3. TCOG Submodel .. A-57
 A.4.1.4. TCA Submodel .. A-59
 A.4.1.5. GSH Conjugation Submodel .. A-63
 A.4.2. Model Parameters and Baseline Values ... A-64
 A.4.3. Statistical Distributions for Parameter Uncertainty and Variability ... A-64
 A.4.3.1. Initial Prior Uncertainty in Population Mean Parameters A-64
 A.4.3.2. Interspecies Scaling to Update Selected Prior Distributions in the Rat and Human ... A-64
 A.4.3.3. Population Variance: Prior Central Estimates and Uncertainty... A-75
 A.4.3.4. Likelihood Function and Prior distributions for Residual Error Estimates ... A-78
 A.4.4. Summary of Bayesian Posterior Distribution Function A-81

A.5. RESULTS OF UPDATED PBPK MODEL ... A-82
 A.5.1. Convergence and Posterior Distributions of Sampled Parameters A-82
 A.5.2. Comparison of Model Predictions with Data A-115
 A.5.2.1. Mouse Data and Model Predictions A-115
 A.5.2.2. Rat Data and Model Predictions ... A-126
C. META-ANALYSIS OF CANCER RESULTS FROM EPIDEMIOLOGICAL STUDIES

C.1. METHODOLOGY
C.2. META-ANALYSIS FOR NHL
C.3. META-ANALYSIS FOR KIDNEY CANCER
C.4. META-ANALYSIS FOR LIVER CANCER
C.5. META-ANALYSIS FOR LUNG CANCER
E. ANALYSIS OF LIVER AND CO-EXPOSURE ISSUES FOR THE TCE TOXICOLOGICAL REVIEW

E.1. BASIC PHYSIOLOGY AND FUNCTION OF THE LIVER—A STORY OF HETEROGENEITY

E.1.1. Heterogeneity of Hepatocytes and Zonal Differences in Function and Ploidy

E.1.2. Effects of Environment and Age: Variability of Response

E.2. CHARACTERIZATION OF HAZARD FROM TCE STUDIES

E.2.1. Acute Toxicity Studies

E.2.1.1. Soni et al. (1998)

E.2.1.2. Soni et al. (1999)

E.2.1.3. Okino et al. (1991)

E.2.1.4. Nunes et al. (2001)

E.2.1.5. Tao et al. (2000)

E.2.1.6. Tucker et al. (1982)

E.2.1.8. Elcombe et al. (1985)

E.2.1.9. Dees and Travis (1993)

E.2.1.10. Nakajima et al. (2000)

E.2.1.11. Berman et al. (1995)

E.2.1.12. Melnick et al. (1987)

E.2.1.15. Ramdhani et al. (2010)

E.2.2. Subchronic and Chronic Studies of TCE

E.2.2.1. Merrick et al. (1989)

E.2.2.2. Goel et al. (1992)

E.2.2.3. Kjellstrand et al. (1981b)

E.2.2.4. Woolhiser et al. (2006)

E.2.2.5. Kjellstrand et al. (1983b)

E.2.2.6. Kjellstrand et al. (1983a)

E.2.2.7. Buben and O’Flaherty (1985)

E.2.2.8. Channel et al. (1998)

E.2.2.9. Dorfmueller et al. (1979)

E.2.2.10. Kumar et al. (2001a)

E.2.2.11. Kawamoto et al. (1988b)

E.2.2.12. NTP (1990)

E.2.2.13. NTP (1988)

E.2.2.14. Fukuda et al. (1983)

E.2.2.15. Henschler et al. (1980)

E.2.2.16. Maltoni et al. (1986)

E.2.2.17. Maltoni et al. (1988)

E.2.2.18. Van Duuren et al. (1979)

E.2.2.19. NCI (1976)

E.2.2.20. Herren-Freund et al. (1987)

E.2.2.21. Anna et al. (1994)

E.2.2.22. Bull et al. (2002)
E.2.3. Mode of Action: Relative Contribution of TCE MetabolitesE-108
 E.2.3.1. Acute studies of DCA/TCA ..E-108
 E.2.3.2. Subchronic and Chronic Studies of DCA and TCAE-133
E.2.4. Summaries and Comparisons Between TCE, DCA, and TCA StudiesE-191
 E.2.4.1. Summary of Results For Short-term Effects of TCEE-192
 E.2.4.2. Summary of Results For Short-Term Effects of DCA and TCA: Comparisons With TCE ..E-199
 E.2.4.3. Summary of TCE Subchronic and Chronic StudiesE-221
 E.2.4.4. Summary of Results for Subchronic and Chronic Effects of DCA and TCA: Comparisons With TCE ..E-232
E.2.5. Studies of CH ..E-254
E.2.6. Serum Bile Acid Assays ...E-259

E.3. STATE OF SCIENCE OF LIVER CANCER MODES OF ACTIONE-261
 E.3.1. State of Science for Cancer and Specifically Human Liver CancerE-263
 E.3.1.1. Epigenetics and Disease States (Transgenerational Effects, Effects of Aging, and Background Changes)E-263
 E.3.1.2. Emerging Technologies, DNA and siRNA, miRNA Microarrays—Promise and Limitations for Modes of Action...E-270
 E.3.1.3. Etiology, Incidence, and Risk Factors for HCCE-279
 E.3.1.4. Issues Associated with Target Cell IdentificationE-282
 E.3.1.5. Status of Mechanism of Action for Human HCCE-286
 E.3.1.6. Pathway and Genetic Disruption Associated with HCC and Relationship to Other Forms of NeoplasiaE-288
 E.3.1.7. Epigenetic Alterations in HCC ..E-290
 E.3.1.8. Heterogeneity of Preneoplastic and HCC Phenotypes..............E-292
 E.3.2. Animal Models of Liver Cancer ..E-299
 E.3.2.1. Similarities with Human and Animal Transgenic ModelsE-302
 E.3.3. Hypothesized Key Events in HCC Using Animal ModelsE-306
 E.3.3.1. Changes in Ploidy ...E-306
 E.3.3.2. Hepatocellular Proliferation and Increased DNA Synthesis.......E-312
 E.3.3.3. Nonparenchymal Cell Involvement in Disease States Including Cancer ..E-315
 E.3.3.4. Gender Influences on SusceptibilityE-322
 E.3.3.5. Epigenomic Modification ..E-324
 E.3.4. Specific Hypothesis for Mode of Action of TCE
 Hepatocarcinogenicity in Rodents ...E-326
 E.3.4.1. PPARα Agonism as the Mode of Action for Liver Tumor Induction—The State of the HypothesisE-326
 E.3.4.2. Other TCE Metabolite Effects That May Contribute to its Hepatocarcinogenicity ...E-357

E.4. EFFECTS OF CO-EXPOSURES ON MODE OF ACTION—INTERNAL AND EXTERNAL EXPOSURES TO MIXTURES INCLUDING ALCOHOL ..E-367
 E.4.1. Internal Co-exposures to TCE Metabolites: Modulation of Toxicity and Implications for TCE Mode of ActionE-369
 E.4.2. Initiation Studies as Co-exposures ...E-369
 E.4.2.1. Herren-Freund et al. (1987) ...E-370
 E.4.2.2. Parnell et al. (1986) ...E-371
F.5. DERIVATION OF POINTS OF DEPARTURE ..F-26
 F.5.1. Applied Dose Points of Departure ..F-26
 F.5.2. PBPK Model-Based Human Points of Departure F-26

F.6. SUMMARY OF POINTS OF DEPARTURE (PODs) FOR STUDIES AND EFFECTS SUPPORTING THE INHALATION RfC AND ORAL RfD F-27
 F.6.1. NTP (NTP, 1988)—BMD Modeling of Toxic Nephropathy in RatsF-27
 F.6.1.1. Dosimetry and BMD Modeling ..F-28
 F.6.1.2. Derivation of HEC099 and HED99 ... F-28
 F.6.2. Woolhiser et al. (2006)—BMD Modeling of Increased Kidney Weight in Rats ... F-30
 F.6.2.1. Dosimetry and BMD Modeling ..F-30
 F.6.2.2. Derivation of HEC099 and HED99 ... F-32
 F.6.3. Keil et al. (2009)—LOAEL for Decreased Thymus Weight in Mice F-32
 F.6.3.1. Dosimetry ... F-33
 F.6.3.2. Derivation of HEC099 and HED99 ... F-33
 F.6.4. Johnson et al. (2003)—BMD Modeling of Fetal Heart Malformations in Rats ... F-34
 F.6.4.1. Dosimetry and BMD Modeling ..F-34
 F.6.4.2. Derivation of HEC099 and HED99 ... F-34
 F.6.5. Peden-Adams et al. (2006)—LOAEL for Decreased PFC Response and Increased Delayed-Type Hypersensitivity in Mice F-35

G. TCE CANCER DOSE-RESPONSE ANALYSES WITH RODENT CANCER BIOASSAY DATA ... G-1
 G.1. DATA SOURCES ... G-1
 G.1.1. Numbers at Risk ... G-1
 G.1.2. Cumulative Incidence .. G-2
 G.2. INTERNAL DOSE-METRICS AND DOSE ADJUSTMENTS G-2
 G.3. DOSE ADJUSTMENTS FOR INTERMITTENT EXPOSURE G-3
 G.4. RODENT TO HUMAN DOSE EXTRAPOLATION G-4
 G.5. COMBINING DATA FROM RELATED EXPERIMENTS IN MALTONI ET AL. (1986) ... G-5
 G.6. DOSE-RESPONSE MODELING RESULTS G-10
 G.7. MODELING TO ACCOUNT FOR DOSE GROUPS DIFFERING IN SURVIVAL TIMES ... G-11
 G.7.1. Time-to-Tumor Modeling ... G-11
 G.7.2. Poly-3 Calculation of Adjusted Number at Risk G-12
 G.8. COMBINED RISK FROM MULTIPLE TUMOR SITES G-13
 G.8.1. Methods .. G-13
 G.8.1.1. Single Tumor Sites ... G-13
 G.8.1.2. Combined Risk From Multiple Tumor Sites G-14
 G.8.2. Results ... G-15
 G.9. PBPK-MODEL UNCERTAINTY ANALYSIS OF UNIT RISK ESTIMATES ... G-34
H. LIFETABLE ANALYSIS AND WEIGHTED LINEAR REGRESSION BASED ON RESULTS FROM CHARBOTEL ET AL. (2006) .. H-1

H.1. LIFETABLE ANALYSIS .. H-1

I. EPA Response to Major Peer Review and Public Comments .. I-1

I.1. PBPK Modeling (SAB Report Section 1): Comments and EPA Response .. I-1

I.1.1. SAB Overall Comments: ... I-1

I.1.2. Major SAB Recommendations and EPA Response: .. I-1

I.1.2.1. PBPK Model Structure (SAB Report Section 1a) ... I-1

I.1.2.2. Bayesian Statistical Approach (SAB Report Section 1b) .. I-2

I.1.2.3. Parameter Calibration (SAB Report Section 1c) ... I-2

I.1.2.4. Model Fit Assessment and Dose-Metric Projections (SAB Report Section 1d) .. I-3

I.1.2.5. Lack of Adequate Sensitivity Analysis (SAB Report Section 1e) ... I-4

I.1.3. Summary of Major Public Comments and EPA Responses .. I-4

I.2.1. SAB Overall Comments: ... I-5

I.2.2. Major SAB Recommendations and EPA Response: .. I-5

I.2.3. Summary of Major Public Comments and EPA Responses: .. I-7

I.3.1. SAB Overall Comments: ... I-8

I.3.2. Major SAB Recommendations and EPA Response: .. I-8

I.3.3. Summary of Major Public Comments and EPA Responses: .. I-9

I.4.1. SAB Overall Comments: ... I-9

I.4.2. Major SAB Recommendations and EPA Response: .. I-10

I.4.3. Summary of Major Public Comments and EPA Responses: .. I-11

I.5. Role of Metabolism (SAB Report Section 5): Comments and EPA Response ... I-11

I.5.1. SAB Overall Comments: ... I-11

I.5.2. Major SAB Recommendations and EPA Response: .. I-12

I.5.2.1. Mediation of TCE-Induced Liver Effects by Oxidative Metabolism (SAB Report Section 5a) I-12

I.5.2.2. Contribution of TCA to Adverse effects on the Liver (SAB Report Section 5b) .. I-12

I.5.2.3. Role of GSH-Conjugation Pathway on TCE-Induced Kidney Effects (SAB Report Section 5c) I-13

I.5.3. Summary of Major Public Comments and EPA Responses: .. I-14
 I.6.1. SAB Overall Comments: ... I-14
 I.6.2.1. Hazard Assessment and Mode of Action (SAB Report Section 6a) ... I-15
 I.6.2.2. Mode of Action for TCE-Induced Kidney Tumors (SAB Report Section 6b) ... I-16
 I.6.2.3. Inadequate Support for PPARα Agonism and its Sequellae Being Key Events in TCE-Induced Liver Carcinogenesis (SAB Report Section 6c) ... I-16
 I.6.2.4. Inadequate Data to specify Key Events and Modes of Action Involved in Other TCE-Induced Cancer and Noncancer Effects (SAB Report Section 6d) ... I-16
 I.6.2.5. Human Relevance of TCE-Induced Cancer and Noncancer Effects in Rodents (SAB Report Section 6e) ... I-16
 I.6.3. Summary of Major Public Comments and EPA Responses: I-17
I.7. Susceptible Populations (SAB Report Section 7): Comments and EPA Response ... I-17
 I.7.1. SAB Overall Comment: ... I-17
 I.7.2. Major SAB Recommendations and EPA Response: I-18
 I.7.3. Summary of Major Public Comments and EPA Responses: I-19
 I.8.1. SAB Overall Comments .. I-20
 I.8.1.1. Selection of Critical Studies and Effects .. I-20
 I.8.1.2. Derivation of RfD and RfC ... I-20
 I.8.1.3. UFs ... I-21
 I.8.2. Major SAB Recommendations and EPA Response: I-21
 I.8.2.1. The Screening, Evaluation, and Selection of Candidate Critical Studies and Effects (SAB Report Section 8a) I-21
 I.8.2.2. The PODs, Including those Derived from BMD Modeling (e.g., Selection of Dose-Response Models, BMR Levels) (SAB Report Section 8b) ... I-22
 I.8.2.3. The Selected PBPK-Based Dose-Metrics for Inter-Species, Intra-Species, and Route-to-Route Extrapolation, Including the Use of Body Weight to the ¾ Power Scaling for Some Dose-Metrics (SAB Report Section 8c) ... I-22
 I.8.2.4. UFs (SAB Report Section 8d) ... I-23
 I.8.2.5. The Equivalent Doses and Concentrations for Sensitive Humans Developed from PBPK Modeling to Replace Standard UFs for Inter- and Intra-Species Toxicokinetics, Including Selection of the 99th Percentile for Overall Uncertainty and Variability to Represent the Toxicokinetically-Sensitive Individual (SAB Report Section 8e) ... I-24
 I.8.2.6. The Qualitative and Quantitative Characterization of Uncertainty and Variability (SAB Report Section 8f) ... I-24
I.8.2.7. The Selection of NTP (1988) [Toxic Nephropathy], NCI (1976) [Toxic Nephrosis], Woolhiser et al. (2006) [Increased Kidney Weights], Keil et al. (2009) [Decreased Thymus Weights and Increased Anti-dsDNA and Anti-ssDNA Antibodies], Peden-Adams et al. (2008) [Developmental Immunotoxicity], and Johnson et al. (2003) [Fetal Heart Malformations] as the Critical Studies and Effects for Noncancer Dose-Response Assessment (SAB Report Section 8g) ..I-25

I.8.2.8. The Selection of the Draft RfC and RfD on the Basis of Multiple Critical Effects for Which Candidate Reference Values are in a Narrow Range at the Low End of the Full Range of Candidate Critical Effects, Rather than on the Basis of the Single Most Sensitive Critical Effect (SAB Report Section 8h) ..I-25

I.8.3. Summary of Major Public Comments and EPA Responses:I-25

I.9.1. SAB Overall Comment: ...I-27

I.9.2.1. Estimation of Unit Risks for RCC (SAB Report Section 9a)I-27

I.9.2.2. Adjustment of RCC Unit Risks (SAB Report Section 9b)I-28

I.9.2.3. Estimation of Human Unit Risks from Rodent Bioassays (SAB Report Section 9c) ..I-28

I.9.2.4. Use of Linear Extrapolation for Cancer Dose-Response Assessment (SAB Report Section 9d) ..I-29

I.9.2.5. Application of PBPK Modeling (SAB Report Section 9e)I-29

I.9.2.6. Qualitative and Quantitative Characterization of Uncertainty and Variability (SAB Report Section 9f) ..I-29

I.9.2.7. Conclusion on the Consistency of Unit Risk Estimates Based on Human Epidemiologic Data and Rodent Bioassay Data (SAB Report Section 9g) ..I-29

I.9.2.8. Preference for the Unit Risk Estimates based on Human Epidemiologic Data (SAB Report Section 9h) ..I-29

I.9.3. Summary of Major Public Comments and EPA Responses:I-29

I.10. ADAFs (SAB Report Section 10): Comments and EPA ResponseI-30

I.10.1. SAB Overall Comment: ...I-30

I.10.3. Summary of Major Public Comments and EPA Responses:I-31

I.11. Additional key studies (SAB Report Section 11) and editorial comments: Comments and EPA Response ..I-31
LIST OF TABLES

Table A-2. Evaluation of Hack et al. (2006) PBPK model predictions for in vivo data in rats A-16
Table A-4. PBPK model parameters, baseline values, and scaling relationships A-39
Table A-5. Uncertainty distributions for the population mean of the PBPK model parameters A-66
Table A-6. Updated prior distributions for selected parameters in the rat and human A-71
Table A-7. Uncertainty distributions for the population variance of the PBPK model parameters A-75
Table A-8. Measurements used for calibration A-79
Table A-9. Posterior distributions for mouse PBPK model population parameters A-84
Table A-10. Posterior distributions for mouse residual errors A-86
Table A-11. Posterior correlations for mouse population mean parameters A-87
Table A-12. Posterior distributions for rat PBPK model population parameters A-94
Table A-13. Posterior distributions for rat residual errors A-96
Table A-14. Posterior correlations for rat population mean parameters A-98
Table A-15. Posterior distributions for human PBPK model population parameters A-105
Table A-16. Posterior distributions for human residual errors A-107
Table A-17. Posterior correlations for human population mean parameters A-108
Table A-18. Summary characteristics of model runs A-185
Table B-1. Description of epidemiologic cohort and PMR studies assessing cancer and TCE exposure B-3
Table B-2. Case-control epidemiologic studies examining cancer and TCE exposure B-9
Table B-3. Geographic-based studies assessing cancer and TCE exposure B-20
Table B-4. Approximate statistical power (%) in cohort and geographic-based studies to detect an RR = 2 B-37
Table B-5. Summary of rationale for study selection for meta-analysis B-54
Table B-6. Characteristics of epidemiologic investigations of Rocketdyne workers B-71
Table C-1. Selected RR estimates for NHL associated with TCE exposure (overall effect) from cohort studies C-6
Table C-2. Selected RR estimates for NHL associated with TCE exposure from case-control studies\(^a\) C-7
Table E-2. Prevalence and multiplicity data from DeAngelo et al. (1999) ...E-146
Table E-3. Difference in pathology by inclusion of unscheduled deaths from DeAngelo et al. (1999) ...E-146
Table E-4. Comparison of data from Carter et al. (2003) and DeAngelo et al. (1999)E-151
Table E-5. Prevalence of foci and tumors in mice administered NaCl, DCA, or TCA from Pereira (1996) ...E-156
Table E-6. Multiplicity of foci and tumors in mice administered NaCl, DCA, or TCA from Pereira (1996) ...E-156
Table E-7. Phenotype of foci reported in mice exposed to NaCl, DCA, or TCA by Pereira (1996) ...E-157
Table E-8. Phenotype of tumors reported in mice exposed NaCl, DCA, or TCA by Pereira (1996) ...E-158
Table E-9. Multiplicity and incidence data (31 week treatment) from Pereira and Phelps (1996) ...E-159
Table E-10. Comparison of descriptions of control data between George et al. (2000) and DeAngelo et al. (2008) ...E-175
Table E-11. TCA-induced increases in liver tumor occurrence and other parameter over control after 60 weeks (Study #1) ..E-182
Table E-12. TCA-induced increases in liver tumor occurrence after 104 weeks (Studies #2 and #3) ..E-185
Table E-13. Comparison of liver effects from TCE, TCA, and DCA (10-day exposures in mice) ...E-202
Table E-14. Liver weight induction as percent liver/body weight fold-of-control in male B6C3F1 mice from DCA or TCA drinking water studies ..E-205
Table E-15. Liver weight induction as percent liver/body weight fold-of-control in male B6C3F1 or Swiss mice from TCE gavage studies ...E-206
Table E-16. B6C3F1 and Swiss (data sets combined) ..E-207
Table E-17. Power calculationsa for experimental design described in text, using Pereira and colleagues (1996) as an example ..E-242
Table E-18. Comparison between results for Yang et al. (2007) and Cheung et al. (2004)a ..E-350
Table F-1. Dose-response data from Chia et al. (1996) ..F-1
Table F-2. Data on TCE in air (ppm) and urinary metabolite concentrations in workers reported by Ikeda et al. (1972) ..F-2
Table F-3. Estimated urinary metabolite and TCE air concentrations in dose groups from Chia et al. (1996) ..F-4
Table F-4. Data on fetuses and litters with abnormal hearts from Johnson et al. (2003)F-9
Table F-5. Comparison of observed and predicted numbers of fetuses with abnormal hearts from Johnson et al. (2003), with and without the high-dose group, using a nested modelF-10
Table F-1. Model selections and results for noncancer dose
Table F-2. Results of nested log-logistic model for fetal cardiac anomalies from Johnson et al.
(2003) without the high-dose group, on the basis of applied dose (mg/kg/day in drinking water) ...F-10
Table F-3. Results of nested log-logistic model for fetal cardiac anomalies from Johnson et al.
(2003) without the high-dose group, using the TotOxMetabBW34 dose-metricF-12
Table F-4. Results of nested log-logistic model for fetal cardiac anomalies from Johnson et al.
(2003) without the high-dose group, using the AUCCBld dose-metricF-14
Table F-5. Analysis of LSCs with respect to dose from Narotsky et al. (1995)F-15
Table F-6. Results of nested log-logistic and Rai-VanRyzin model for fetal eye defects from Narotsky et al. (1995), on the basis of applied dose (mg/kg/day in drinking water)F-16
Table F-7. Comparison of results of nested log-logistic (without LSC or IC) and quantal log-logistic model for fetal eye defects from Narotsky et al. (1995)F-18
Table F-8. Results of nested log-logistic and Rai-VanRyzin model for prenatal loss from Narotsky et al. (1995), on the basis of applied dose (mg/kg/day in drinking water)F-19
Table F-9. Model selections and results for noncancer dose-response analysesF-22
Table G-1. Internal dose-metrics used in dose-response analyses, identified by “X”G-2
Table G-2. Experiments BT304 and BT304bis, female Sprague-Dawley rats, Maltoni et al. (1986). Number alive is reported for week of first tumor observation in either males or females. These data were not used for dose-response modeling because there is no consistent trend (for the combined data, there is no significant trend by the Cochran-Armitage test, and no significant differences between control and dose groups by Fisher’s exact test). ...G-6
Table G-3. Experiments BT304 and BT304bis, male Sprague-Dawley rats, Maltoni et al. (1986): leukemias. Number alive is reported for week of first tumor observation in either males or females. ...G-7
Table G-4. Experiments BT304 and BT304bis, male Sprague-Dawley rats, Maltoni et al. (1986): kidney adenomas + carcinomas. Number alive is reported for week of first tumor observation in either males or females. ...G-8
Table G-5. Experiments BT304 and BT304bis, male Sprague-Dawley rats, Maltoni et al. (1986): testis, Leydig cell tumors. Number alive is reported for week of first tumor observation. ...G-9
Table G-6. Rodent to human conversions for internal dose-metric TotOxMetabBW34........G-14
Table G-7. Rodent to human conversions for internal dose-metric TotMetabBW34........G-14
Table G-8. Female B6C3F1 mice—applied doses: data ...G-16
Table G-9. Female B6C3F1 mice—applied doses: model selection comparison of model fit statistics for multistage models of increasing order ...G-16
Table G-10. Female B6C3F1 mice—applied doses: BMD and risk estimates (inferences for BMR of 0.05 extra risk at 95% confidence level) ...G-17
Table G-11. B6C3F1 female mice inhalation exposure—applied doses................................. G-19
Table G-12. B6C3F1 female mice—applied doses: model selection comparison of model fit
statistics for multistage models of increasing order... G-19
Table G-13. B6C3F1 female mice inhalation exposure—applied doses (inferences for 0.05 extra
risk at 95% confidence level).. G-20
Table G-14. Maltoni Sprague-Dawley male rats—applied doses G-22
Table G-15. Maltoni Sprague-Dawley male rats—applied doses: model selection comparison of
model fit statistics for multistage models of increasing order G-22
Table G-16. Maltoni Sprague-Dawley male rats—applied doses G-23
Table G-17. Female B6C3F1 mice—internal dose-metric (total oxidative metabolism): data G-25
Table G-18. Female B6C3F1 mice—internal dose: model selection comparison of model fit
statistics for multistage models of increasing order.. G-25
Table G-19. Female B6C3F1 mice—internal dose-metric (total oxidative metabolism): BMD
and risk estimates (values rounded to 4 significant figures) (inferences for BMR of 0.05
extra risk at 95% confidence level)... G-26
Table G-20. B6C3F1 female mice inhalation exposure—internal dose-metric (total oxidative
metabolism).. G-28
Table G-21. B6C3F1 female mice—internal dose: model selection comparison of model fit
statistics for multistage models of increasing order.. G-28
Table G-22. B6C3F1 female mice inhalation exposure—internal dose-metric (total oxidative
metabolism) (inferences for 0.05 extra risk at 95% confidence level) G-29
Table G-23. Maltoni Sprague-Dawley male rats—internal dose-metric (total metabolism)... G-31
Table G-24. Maltoni Sprague-Dawley male rats—internal dose model selection comparison of
model fit statistics for multistage models of increasing order G-31
Table G-25. Maltoni Sprague-Dawley male rats—internal dose-metric (total metabolism)
(inferences for 0.01 extra risk at 95% confidence level)... G-32
LIST OF FIGURES

Figure A-1. Hierarchical population statistical model for PBPK model parameter uncertainty and variability. ... A-2

Figure A-2. Schematic of how posterior predictions were generated for comparison with experimental data. ... A-8

Figure A-3. Limited optimization results for male closed-chamber data from Fisher et al. (1991) without (top) and with (bottom) respiratory metabolism. .. A-35

Figure A-4. Limited optimization results for female closed-chamber data from Fisher et al. (1991) without (top) and with (bottom) respiratory metabolism. .. A-36

Figure A-5. Respiratory metabolism model for updated PBPK model. .. A-37

Figure A-6. Submodel for TCE gas exchange, respiratory metabolism, and arterial blood concentration. .. A-50

Figure A-7. Submodel for TCE oral absorption, tissue distribution, and metabolism. A-51

Figure A-8. Submodel for TCOH. .. A-55

Figure A-9. Submodel for TCOG. .. A-58

Figure A-10. Submodel for TCA. .. A-60

Figure A-11. Submodel for TCE GSH conjugation metabolites. .. A-63

Figure A-12. Updated hierarchical structure for rat and human models. A-81

Figure A-13. Prior and posterior mouse population mean parameters (Part 1). A-88

Figure A-14. Prior and posterior mouse population mean parameters (Part 2). A-89

Figure A-15. Prior and posterior mouse population mean parameters (Part 3). A-90

Figure A-16. Prior and posterior mouse population variance parameters (Part 1). A-91

Figure A-17. Prior and posterior mouse population variance parameters (Part 2). A-92

Figure A-18. Prior and posterior mouse population variance parameters (Part 3). A-93

Figure A-19. Prior and posterior rat population mean parameters (Part 1). A-99

Figure A-20. Prior and posterior rat population mean parameters (Part 2). A-100

Figure A-21. Prior and posterior rat population mean parameters (Part 3). A-101

Figure A-22. Prior and posterior rat population variance parameters (Part 1). A-102

Figure A-23. Prior and posterior rat population variance parameters (Part 2). A-103

Figure A-24. Prior and posterior rat population variance parameters (Part 3). A-104

Figure A-25. Prior and posterior human population mean parameters (Part 1). A-109

Figure A-26. Prior and posterior human population mean parameters (Part 2). A-110

Figure A-27. Prior and posterior human population mean parameters (Part 3). A-111

Figure A-28. Prior and posterior human population variance parameters (Part 1). A-112

Figure A-29. Prior and posterior human population variance parameters (Part 2). A-113

Figure A-30. Prior and posterior human population variance parameters (Part 3). A-114
Figure A-31. Comparison of mouse calibration data (boxes) and PBPK model predictions (red line: using the posterior mean of the subject-specific parameters; + with error bars: single data points; or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-32. Comparison of rat calibration data (boxes) and PBPK model predictions (red line: using the posterior mean of the subject-specific parameters; + with error bars: single data points; or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-33. Comparison of rat evaluation data (boxes) and PBPK model predictions (+ with error bars: single data points or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-34. Comparison of human calibration data (boxes) and PBPK model predictions (red line: using the posterior mean of the subject-specific parameters; + with error bars: single data points; or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-35. Comparison of human evaluation data (boxes) and PBPK model predictions (+ with error bars: single data points or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-36. Comparison of Kim et al. (2009) mouse data (boxes) and PBPK model predictions (+ with error bars: single data points or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-37. Comparison of best-fitting (out of 50,000 posterior samples) PBPK model prediction and Kim et al. (2009) TCA blood concentration data for mice gavaged with 2,140 mg/kg TCE.

Figure A-38. Comparison of best-fitting (out of 50,000 posterior samples) PBPK model prediction and Kim et al. (2009) DCVG blood concentration data for mice gavaged with 2,140 mg/kg TCE.

Figure A-39. PBPK model predictions for the fraction of intake undergoing GSH conjugation in mice continuously exposed orally to TCE.

Figure A-40. PBPK model predictions for the fraction of intake undergoing GSH conjugation in mice continuously exposed via inhalation to TCE.

Figure A-41. Comparison of Liu et al. (2009) rat data (boxes) and PBPK model predictions (+ with error bars: single data points or shaded regions: 2.5, 25, 50, 75, and 97.5% population-based predictions).

Figure A-42. Assumed drinking water patterns as a function of time since beginning of exposure.

Figure A-43. PBPK model predictions for TCA in blood and liver of male B6C3F1 mice from Mahle et al. (1999).
Figure A-44. PBPK model predictions for TCA in blood and liver of male B6C3F₁ mice from Green (2003a, 2003b). .. A-187
Figure A-45. Distribution of fractional absorption fit to each TCA drinking water kinetic study group in mice, using LHL drinking water intake patterns. .. A-188
Figure C-1. Meta-analysis of NHL and overall TCE exposure. Rectangle sizes reflect relative weights of the individual studies. The bottom diamond represents the summary RR estimate. .. C-11
Figure C-2. Funnel plot of SE by log RR estimate for TCE and NHL studies. C-16
Figure C-3. Cumulative meta-analysis of TCE and NHL studies, progressively including studies with increasing SEs. ... C-17
Figure C-4. Meta-analysis of NHL and TCE exposure—highest exposure groups. Rectangle sizes reflect relative weights of the individual studies. The bottom diamond represents the RRm estimate. .. C-24
Figure C-5. Meta-analysis of kidney cancer and overall TCE exposure. Random-effects model; fixed-effect model same. Rectangle sizes reflect relative weights of the individual studies. The summary estimate is in the bottom row, represented by the diamond. ... C-36
Figure C-6. Funnel plot of SE by log RR estimate for TCE and kidney cancer studies. C-37
Figure E-1. Comparison of average fold-changes in relative liver weight to control and exposure concentrations of ≤2 g/L in drinking water for TCA and DCA in male B6C3F₁ mice for 14–30 days .. E-209
Figure E-2. Comparisons of fold-changes in average relative liver weight and gavage dose of (top panel) male B6C3F₁ mice for 10–28 days of exposure and (bottom panel) in male B6C3F₁ and Swiss mice .. E-211
Figure E-3. Comparison of fold-changes in relative liver weight for data sets in male B6C3F₁, Swiss, and NRMI mice between TCE studies [duration 28–42 days] and studies of direct oral TCA administration to B6C3F₁ mice [duration 14–28 days] .. E-214
Figure E-4. Fold-changes in relative liver weight for data sets in male B6C3F₁, Swiss, and NRMI mice reported by TCE studies of duration 28–42 days using internal dose-metrics predicted by the PBPK model described in Section 3.5: (A) dose-metric is the median estimate of the daily AUC of TCE in blood, (B) dose-metric is the median estimate of the total daily rate of TCE oxidation. .. E-216
Figure E-5. Comparison of Ito et al. and David et al. data for DEHP tumor induction from (Guyton et al., 2009). .. E-335
Figure F-1. Regression of TCE in air (ppm) and TCA in urine (mg/g creatinine) based on data from Ikeda et al. (1972). ... F-3
Figure F-2. BMD modeling of Johnson et al. (2003) using nested log-logistic model, with applied dose, without LSC, with IC, and without the high-dose group, using a BMR of 0.05 extra risk (top panel) or 0.01 extra risk (bottom panel). .. F-11
Figure F-3. BMD modeling of Johnson et al. (2003) using nested log-logistic model, with TotOxMetabBW34 dose-metric, without LSC, with IC, and without the high-dose group, using a BMR of 0.01 extra risk.

Figure F-4. BMD modeling of Johnson et al. (2003) using nested log-logistic model, with AUCCBld dose-metric, without LSC, with IC, and without the high-dose group, using a BMR of 0.01 extra risk.

Figure F-5. BMD modeling of fetal eye defects from Narotsky et al. (1995) using nested log-logistic model, with applied dose, with both LSC and IC, using a BMR of 0.05 extra risk.

Figure F-6. BMD modeling of fetal eye defects from Narotsky et al. (1995) using nested log-logistic model, with applied dose, without either LSC or IC, using a BMR of 0.05 extra risk.

Figure F-7. BMD modeling of fetal eye defects from Narotsky et al. (1995) using nested Rai-VanRyzin model, with applied dose, without either LSC or IC, using a BMR of 0.05 extra risk.

Figure F-8. BMD modeling of prenatal loss reported in Narotsky et al. (1995) using nested log-logistic model, with applied dose, without LSC, with IC, using a BMR of 0.05 extra risk (top panel) or 0.01 extra risk (bottom panel).

Figure F-9. BMD modeling of prenatal loss reported in Narotsky et al. (1995) using nested Rai-VanRyzin model, with applied dose, without LSC, with IC, using a BMR of 0.05 extra risk (top panel) or 0.01 extra risk (bottom panel).

Figure F-10. BMD modeling of NTP (1988) toxic nephropathy in female Marshall rats.

Figure F-11. Derivation of HEC99 and HED99 corresponding to the rodent idPOD from NTP (1988) toxic nephropathy in rats.

Figure F-12. BMD modeling of Woolhiser et al. (2006) for increased kidney weight in female Sprague-Dawley rats.

Figure F-13. Derivation of HEC99 and HED99 corresponding to the rodent idPOD from Woolhiser et al. (2006) for increased kidney weight in rats.

Figure F-14. Derivation of HEC99 and HED99 corresponding to the rodent idPOD from Keil et al. (2009) for decreased thymus weight in mice.

Figure F-15. Derivation of HEC99 and HED99 corresponding to the rodent idPOD from Johnson et al. (2003) for increased fetal cardiac malformations in female Sprague-Dawley rats using the total oxidative metabolism dose-metric.

Figure G-1. Female B6C3F1 mice—applied doses: combined and individual tumor extra-risk functions.

Figure G-2. Female B6C3F1 mice—applied doses: posterior distribution of BMDc for combined risk.
Figure G-3. B6C3F₁ female mice inhalation exposure—applied doses: combined and individual tumor extra-risk functions. ... G-21
Figure G-4. B6C3F₁ female mice inhalation exposure—applied doses: posterior distribution of BMDc for combined risk. ... G-21
Figure G-5. Maltoni Sprague-Dawley male rats—applied doses: combined and individual tumor extra-risk functions. ... G-24
Figure G-6. Maltoni Sprague-Dawley male rats—applied doses: posterior distribution of BMDc for combined risk. ... G-24
Figure G-7. Female B6C3F₁ mice—internal dose-metric (total oxidative metabolism): combined and individual tumor extra-risk functions. ... G-27
Figure G-8. Female B6C3F₁ mice—internal dose-metric (total oxidative metabolism): posterior distribution of BMDc for combined risk. ... G-27
Figure G-9. B6C3F₁ female mice inhalation exposure—internal dose-metric: combined and individual tumor extra-risk functions. ... G-30
Figure G-10. B6C3F₁ female mice inhalation exposure—internal dose-metric: posterior distribution of BMDc for combined risk. ... G-30
Figure G-11. Maltoni Sprague-Dawley male rats—internal dose-metric: combined and individual tumor extra-risk functions. ... G-33
Figure G-12. Maltoni Sprague-Dawley male rats—internal dose-metric: posterior distribution of BMDc for combined risk. ... G-33