Benz[a]anthracene; CASRN 56-55-3

Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data, as outlined in the IRIS assessment development process. Sections I (Health Hazard Assessments for Noncarcinogenic Effects) and II (Carcinogenicity Assessment for Lifetime Exposure) present the conclusions that were reached during the assessment development process. Supporting information and explanations of the methods used to derive the values given in IRIS are provided in the guidance documents located on the IRIS website.

STATUS OF DATA FOR Benz[a]anthracene

File First On-Line 12/01/1990

<table>
<thead>
<tr>
<th>Category (section)</th>
<th>Assessment Available?</th>
<th>Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral RfD (I.A.)</td>
<td>not evaluated</td>
<td></td>
</tr>
<tr>
<td>Inhalation RfC (I.B.)</td>
<td>not evaluated</td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity Assessment (II.)</td>
<td>yes</td>
<td>12/01/1990</td>
</tr>
</tbody>
</table>

I. Chronic Health Hazard Assessments for Noncarcinogenic Effects

I.A. Reference Dose for Chronic Oral Exposure (RfD)

Substance Name — Benz[a]anthracene
CASRN — 56-55-3

Not available at this time.
I.B. Reference Concentration for Chronic Inhalation Exposure (RfC)

Substance Name — Benz[a]anthracene
CASRN — 56-55-3
Not available at this time.

II. Carcinogenicity Assessment for Lifetime Exposure

Substance Name — Benz[a]anthracene
CASRN — 56-55-3
Last Revised — 12/01/1990

Section II provides information on three aspects of the carcinogenic assessment for the substance in question; the weight-of-evidence judgment of the likelihood that the substance is a human carcinogen, and quantitative estimates of risk from oral exposure and from inhalation exposure. The quantitative risk estimates are presented in three ways. The slope factor is the result of application of a low-dose extrapolation procedure and is presented as the risk per (mg/kg)/day. The unit risk is the quantitative estimate in terms of either risk per ug/L drinking water or risk per ug/cu.m air breathed. The third form in which risk is presented is a drinking water or air concentration providing cancer risks of 1 in 10,000, 1 in 100,000 or 1 in 1,000,000. The rationale and methods used to develop the carcinogenicity information in IRIS are described in The Risk Assessment Guidelines of 1986 (EPA/600/8-87/045) and in the IRIS Background Document. IRIS summaries developed since the publication of EPA's more recent Proposed Guidelines for Carcinogen Risk Assessment also utilize those Guidelines where indicated (Federal Register 61(79):17960-18011, April 23, 1996). Users are referred to Section I of this IRIS file for information on long-term toxic effects other than carcinogenicity.

II.A. Evidence for Human Carcinogenicity

II.A.1. Weight-of-Evidence Characterization

Classification — B2; probable human carcinogen

Basis — Based on no human data and sufficient data from animal bioassays. Benz[a]anthracene produced tumors in mice exposed by gavage; intraperitoneal, subcutaneous or intramuscular injection; and topical application. Benz[a]anthracene produced mutations in bacteria and in mammalian cells, and transformed mammalian cells in culture.
II.A.2. Human Carcinogenicity Data

None. Although there are no human data that specifically link exposure to benz[a]anthracene to human cancers, benz[a]anthracene is a component of mixtures that have been associated with human cancer. These include coal tar, soots, coke oven emissions and cigarette smoke (U.S. EPA, 1984, 1990; IARC, 1984; Lee et al., 1976; Brockhaus and Tomingas, 1976).

II.A.3. Animal Carcinogenicity Data

Sufficient. Benz[a]anthracene administration caused an increase in the incidence of tumors by gavage (Klein, 1963); dermal application (IARC, 1973); and both subcutaneous injection (Steiner and Faulk, 1951; Steiner and Edgecomb, 1952) and intraperitoneal injection (Wislocki et al., 1986) assays. A group of male B6AF1/J mice was exposed to gavage solutions containing 3% benz[a]anthracene in Methocel-Aerosol O.T. (dioctyl ester of sodium sulfo-succinic acid), 3 doses/week for 5 weeks (total dose of approximately 225 mg/mouse, 500 mg/kg/day) or the vehicle (Klein, 1963). Mice were evaluated for tumors on days 437-444 and 547 after treatment was initiated. A statistical analysis was not reported. Increased incidences of pulmonary adenoma and hepatoma in treated vs. control mice were reported by the authors at both observation times. The incidence of pulmonary adenoma at 437-444 days was 37/39 (95%) in treated animals vs. 10/38 (26%) in controls; whereas at 547 days, 19/20 (95%) treated animals and 7/20 (35%) controls had pulmonary adenomas. The incidence of hepatomas at 437 to 440 days was 18/39 (46%) in treated animals compared with 0/38 among the vehicle controls. After 547 days, the hepatoma incidences increased to 20/20 for the treated animals versus 2/20 (10%) for vehicle controls.

Mice (strain and sex not specified) were exposed to a single gavage dose of 0.5 mg benz[a]anthracene in mineral oil (approximately 17 mg/kg). No tumors were reported in 13 mice examined 16 months after exposure. In another part of the study, multiple gavage treatments, 8 or 16 treatments at 3-7 day intervals over a 16-month period, resulted in forestomach papillomas in 2/27 treated mice compared with 0/16 in vehicle controls (Bock and King, 1959).

Groups of male and female CD-1 mice (n=90-100) received intraperitoneal injections of benz[a]anthracene in DMSO on days 1, 8, and 15 of age (total dose = 638 ug/mouse) (Wislocki et al., 1986). Tumors were evaluated in animals that died spontaneously after weaning and in all remaining animals at 1 year after exposure. In treated male mice, a statistically significant increase in the incidence of liver adenomas or carcinomas (31/39 treated vs. 2/28 controls) occurred; 25/39 had carcinomas. Female mice did not develop liver tumors. The incidence of pulmonary adenomas or carcinomas in benz[a]anthracene-treated males (6/39, with a majority of adenomas) was increased but not statistically significantly relative to the vehicle controls (1/28).
In the female mice, however, the incidence of pulmonary adenomas was significantly elevated in the treated group (6/32) when compared with vehicle controls (0/31).

Benz[a]anthracene yielded positive results in tests for complete carcinogenicity and initiating activity in skin painting assays in C3H/He, CAF1 and ICR/Ha mouse strains. These studies are reviewed in IARC (1973).

Subcutaneous injection of benz[a]anthracene in tricaprylin into C57Bl mice (40-50/group) produced injection site sarcomas 9 months after treatment (Steiner and Falk, 1951; Steiner and Edgecomb, 1952). The sarcoma incidences were: uninjected controls, 0/76; tricaprylin controls, 3/28 (11%); 0.05 mg, 5/43 (12%); 0.2 mg, 11/43 (26%); 1.0 mg, 15/31 (48%); 5.0 mg, 49/145 (34%); and 10 mg, 5/16 (31%). The results of similar experiments in this series were combined (Steiner and Edgecomb, 1952). A statistical analysis of the results was not reported. Survival was roughly equivalent in all groups (70%).

Klein (1952) showed that an intramuscular injection of benz[a]anthracene in combination with 1 or 3% croton oil produced injection site fibrosarcomas and hemangioendotheliomas in Strain A-derived albino mice; 3/24 mice injected with benz[a]anthracene and 1% croton oil and 1/26 mice injected with benz[a]anthracene and 3% croton oil developed tumors. None of the 30 mice injected with benz[a]anthracene and 0.1% croton oil and none of the 30 mice injected with benz[a]anthracene and 5% croton oil developed tumors. In the control groups none of the 35 mice injected only with 1% croton oil and none of the 32 mice injected only with benz[a]anthracene developed tumors. The survival rate for all groups was roughly equivalent (74%).

II.A.4. Supporting Data for Carcinogenicity

The results of tests for DNA damage in Escherichia coli have not been positive at concentrations of benz[a]anthracene up to 250 µg/mL and 1000 µg/well (Rosenkrantz and Poirier, 1979; DeFlora et al., 1984). Positive results were obtained in tests for reverse mutation in five different strains of Salmonella typhimurium and for forward mutation in one strain (McCann et al., 1975; Coombs et al., 1976; Simmon, 1979; Salamone et al., 1979; Bartsch et al., 1980; DeFlora et al., 1984; Norpoth et al., 1984; Utesch et al., 1987; Bos et al., 1988; Kaden et al. 1979).

Benz[a]anthracene produced positive results in an assay for mutations in Drosophila melanogaster (Fahmy and Fahmy, 1973).

Tests for DNA damage, mutation, chromosomal effects and cell transformation in a variety of eukaryotic cell preparations have yielded mostly positive results. Benz[a]anthracene tested positive for DNA damage in primary rat hepatocytes and HeLa cells (Probst et al., 1981; Martin

Current theories on mechanisms of metabolic activation of polycyclic aromatic hydrocarbons are consistent with a carcinogenic potential for benz[a]anthracene. Benz[a]anthracene has a "bay-region" structure (Jerina et al., 1978). It is metabolized by mixed function oxidases to reactive "bay-region" diol epoxides that are mutagenic in bacteria and tumorigenic in mouse skin painting assays (Booth and Sims, 1974; Wood et al., 1977a,b).

II.B. Quantitative Estimate of Carcinogenic Risk from Oral Exposure

Not available.

II.C. Quantitative Estimate of Carcinogenic Risk from Inhalation Exposure

Not available.

II.D. EPA Documentation, Review, and Contacts (Carcinogenicity Assessment)

II.D.1. EPA Documentation

The 1990 Drinking Water Criteria Document for Polycyclic Aromatic Hydrocarbons has received Agency and external review.

II.D.2. EPA Review (Carcinogenicity Assessment)

Verification Date — 02/07/1990
II.D.3. EPA Contacts (Carcinogenicity Assessment)

Please contact the IRIS Hotline for all questions concerning this assessment or IRIS, in general, at (202)566-1676 (phone), (202)566-1749 (FAX) or hotline.iris@epa.gov (internet address).

III. [reserved]
IV. [reserved]
V. [reserved]

VI. Bibliography

Substance Name — Benz[a]anthracene
CASRN — 56-55-3

VI.A. Oral RfD References

None

VI.B. Inhalation RfC References

None

VI.C. Carcinogenicity Assessment References

VII. Revision History

Substance Name — Benz[a]anthracene
CASRN — 56-55-3

<table>
<thead>
<tr>
<th>Date</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/01/1990</td>
<td>II.</td>
<td>Carcinogen assessment on-line</td>
</tr>
</tbody>
</table>
VIII. Synonyms

Substance Name — Benz[a]anthracene
CASRN — 56-55-3
Last Revised — 12/01/1990

- 56-55-3
- Benz(a)anthracene
- benz(a)anthracene
- Benzantracene
- Benzanthrene
- BENZO(a)ANTHRACENE
- BENZO(b)PHENANTHRENE
- Benzoanthracene
- HSDB 4003
- NSC 30970
- RCRA WASTE NUMBER U018
- Tetrphenyl
- 1,2-BENZ(a)ANTHRACENE
- 1,2-Benzenanthracene
- 1,2-BENZANTHRAZEN [German]
- 1,2-BENZANTHRENE
- 1,2-BENZOANTHRACENE
- 2,3-Benzophenanthrene