Science Inventory

SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL

Citation:

Bhave, P., G Pouliot, AND M. Zheng. SOURCE APPORTIONMENT OF PRIMARY CARBONACEOUS AEROSOL USING THE COMMUNITY MULTISCALE AIR QUALITY MODEL. Presented at 27th NATO/CCMS International Technical Meeting on Air Pollution Modeling and its Application, Banff, Alberta, Canada, October 25-29, 2004.

Impact/Purpose:

The objectives of this task are to continuously develop and improve EPA's mesoscale (regional through urban scale) air quality simulation models, such as the Community Multiscale Air Quality (CMAQ) model, as air quality management and NAAQS implementation tools. CMAQ is a multiscale and multi-pollutant chemistry-transport model (CTM) that includes the necessary critical science process modules for atmospheric transport, deposition, cloud mixing, emissions, gas- and aqueous-phase chemical transformation processes, and aerosol dynamics and chemistry. To achieve the advances in CMAQ, research will be conducted to develop and test appropriate chemical and physical mechanisms, improve the accuracy of emissions and dry deposition algorithms, and to develop and improve state-of-the-science meteorology models and contributing process parameterizations.

Description:

A substantial fraction of fine particulate matter (PM) across the United States is composed of carbon, which may be either emitted in particulate form (i.e., primary) or formed in the atmosphere through gas-to-particle conversion processes (i.e., secondary). Primary carbonaceous aerosol is emitted from numerous sources including motor vehicle exhaust, residential wood combustion, coal combustion, forest fires, agricultural burning, solid waste incineration, food cooking operations, and road dust. Quantifying the primary contributions from each major emission source category is a prerequisite to formulating an effective control strategy for the reduction of carbonaceous aerosol concentrations. A quantitative assessment of secondary carbonaceous aerosol concentrations also is required, but falls outside the scope of the present work.

The research presented here was performed under the Memorandum of Understanding between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) and under agreement number DW13921548. Although it has been reviewed by EPA and NOAA and approved for publication, it does not necessarily reflect their policies or views.

Record Details:

Record Type:DOCUMENT( PRESENTATION/ PAPER)
Product Published Date:10/27/2004
Record Last Revised:06/21/2006
Record ID: 85515