Office of Research and Development Publications

DISSOLVED ORGANIC FLUOROPHORES IN SOUTHEASTERN US COASTAL WATERS: CORRECTION METHOD FOR ELIMINATING RAYLEIGH AND RAMAN SCATTERING PEAKS IN EXCITATION-EMISSION MATRICES

Citation:

Zepp, R G., W. Sheldon, AND M. A. Moran. DISSOLVED ORGANIC FLUOROPHORES IN SOUTHEASTERN US COASTAL WATERS: CORRECTION METHOD FOR ELIMINATING RAYLEIGH AND RAMAN SCATTERING PEAKS IN EXCITATION-EMISSION MATRICES. MARINE CHEMISTRY 89(1-4):15-36, (2004).

Impact/Purpose:

The overall objective of this task is to develop quantitative relationships for assessing the vulnerability of aquatic resources to global change. The task will contribute experimental and modeling tools for assessments of the interactions of global climate and UV changes with coral reefs and selected watersheds and estuaries in the U.S. These activities are contributing primarily to two APGs in the ecosystems component of the Global Change Research Multiyear Plan: the 2006 APG (APG 3) on building the capacity to assess global change impacts on coastal aquatic ecosystems, including coral reefs and estuaries and the 2004 APG (APG 2) on building capacity to assess and respond to global change impacts on selected watersheds. One major task objective is to assess interactions of global warming and UV exposure that are contributing to the observed coral bleaching and disease. Our lab is working with scientists at the NHEERL Gulf Ecology Lab to characterize UV exposure and effects at several coral reef sites. Other research in this task is examining the interactions between UV-induced breakdown of refractory organic matter in estuaries and coastal areas that enhance UV penetration into the water and concurrently form biologically-labile nitrogen-, phosphorus- and carbon-containing substances that stimulate productivity and microbial activity. This task also involves research in central Brazil that is part of the Large Scale Biosphere Atmosphere Experiment (LBA). The objectives of this project are to assess the impacts of land use and climatic changes on soil nutrient cycles and microbiota, trace gas exchange and water quality in the Brazilian cerrado. This work involves a close collaboration between EPA and a group of scientists from the Department of Ecology, University of Brasilia, Brazil. Other objectives of this task are to assess the interactions of land use and climate changes with the ecological functioning of streams in watersheds of the Piedmont region of the southestern U.S.

Description:

Fluorescence-based observations provide useful, sensitive information concerning the nature and distribution of colored dissolved organic matter (CDOM) in coastal and freshwater environments. The excitation-emission matrix (EEM) technique has become widely used for evaluating sources and sinks of CDOM. Water scattering peaks, however, can create problems for quantitative analysis and display of the EEMs, especially for samples with low CDOM concentrations. Here we report a new method for eliminating Rayleigh and Raman scatter peaks from EEMs during post-processing of the data in MATLABE.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:06/15/2004
Record Last Revised:06/06/2005
Record ID: 84926