Science Inventory

THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

Citation:

Impact/Purpose:

The overall goals of the task are to apply NERL,s core capability in advanced chemical science and technology for maximum benefit in estimating exposures of ecosystems and humans to chemical stressors and to identify emerging pollution concerns, in particular long-range airborne transport of contaminants. This task comprises several subtasks, each with individual objectives:

Subtask 1: screen exposures of National Park PRIMENet ecosystems to chemical stressors, identifying indications of exposure requiring further evaluation, and evaluate new analytical methods as replacements for standard methods in future assessments of ecosystem contaminant exposures.

Subtask 2: evaluate a new mercury analytical approach with superior performance on complex solid matrices such as biological tissues, and apply the approach to estimating exposure of ecosystems and humans to mercury

Subtask 3: determine distribution patterns of chemical contaminants in the southern Sierra Nevada Range of California, investigate topographic and weather factors that may influence the distributions, and determine if a correlation exists between contaminant distributions and extirpation patterns of the mountain yellow-legged frog

Subtask 4: provide analytical methods to measure a number of inorganic and organic arsenic species in a variety of environmental matrices, elucidate the environmental transformations undergone by organoarsenic animal-feed additives, and determine if the potential exists for substantially increased exposure of humans and aquatic organisms to arsenic.

Description:

Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calculated for ten PAHs by several ab initio methods. The main method used for these calculations was the Configuration Interaction approach, modeling excited states as combinations of single substitutions out of the Hartree-Fock ground state. These calculations correlate well with both experimentally measured singlet and triplet state energies and also previous HOMO-LUMO gap energies that approximate the singlet state energies. The excited state calculations then correlate well with general models of photo-induced toxicity based for the PAHS.

Record Details:

Record Type:DOCUMENT
Product Published Date:05/21/2002
Record Last Revised:07/15/2004
Record ID: 74346