Office of Research and Development Publications

USEPA BIOMONITORING AND BIOINDICATOR CONCEPTS NEEDED TO EVALUATE THE BIOLOGICAL INTEGRITY OF AQUATIC SYSTEMS

Citation:

Lazorchak, J M., F H. McCormick, D L. Lattier, M J. Bagley, G P. Toth, B H. Hill, B S. Brown, V D. Engle, AND A. F. Maciorowski. USEPA BIOMONITORING AND BIOINDICATOR CONCEPTS NEEDED TO EVALUATE THE BIOLOGICAL INTEGRITY OF AQUATIC SYSTEMS. Chapter 14, B.A. Markert, A.M. Breure and H.G. Zechmeister (ed.), Bioindicators and Biomonitors. Elsevier Science Ltd, New York, NY, (2003).

Impact/Purpose:

The indeterminate condition of exposure indicator research stands to change markedly with the ability to connect molecular biological technologies with cellular or tissue effects and outcomes. Three focal areas of ecological research aim to develop a sequence of approaches where "the earliest recognizable signatures of exposure" (i.e., unique patterns of up- and down-regulated genes and proteins) are identified for numerous stressors, demonstrable in case studies and incorporated into Agency, State and Regional studies supported by EMAP and other programs.

Area 1, Computational Toxicology Research: Exposure assessment has historically been based on use of chemical analysis data to generate exposure models. While biological activity of chemicals has been recognized to be important for exposure risk assessments, measurement of such activity has been limited to whole organism toxicity tests. Use of molecular approaches will:

improve extrapolation between components of source-to-outcome continuum (source , exposure , dose , effect , outcome)

Using a systems modeling approach, gene and protein expression data, in small fish models (fathead minnow and zebrafish), will be integrated with metabolomic and histopathological data. This will assist in prediction of environmental transformation and chemical effects based on structural characteristics, and enhance quantitative risk assessments, including areas of uncertainty such as a basis for extrapolation of effects of endocrine disrupting chemicals, interspecies extrapolation, complex chemical mixtures and dose-response assessment.

Area 2, Ecological Research-Environmental Diagnostics: Development of molecular diagnostic indicators contributes to several of the GPRA Diagnostic Research Goals. Methods will employ DNA microarray technology and expression proteomics, focusing on species of relevance to aquatic ecosystem risk assessment. Significantly, these diagnostic indicators will open the door to understanding subcellular interactions resulting from exposure to complex chemical mixtures.

define relationship between genetic disposition of populations and degree/specificity of stressor-specific gene transcriptional response in aquatic organisms (fish and invertebrates)

identify of chemical mixture induced transcriptional "patterns" using microarrays and hyperspectral scanning - via collaboration with DOE Sandia National Labs

apply molecular indicators to watershed level stressor study, including pilot studies with targeted pesticides and toxins indicators

develop molecular indicators of exposure for invertebrates (Daphnia, Lumbriculus, Chironomus)

Area 3, Exposure Research in Endocrine Disruptors:

Subobjective 1: Develop exposure methods, measurement protocols, and models for assessment of risk management practices of endocrine disrupting compounds. As risk management approaches are identified and developed, there will be a need to identify, adapt and develop bioassay screening tools and other analytical methods to assess their efficacy. Measurements research will be performed to define management needs. This effort will entail cross-lab participation from NRMRL, NERL and NHEERL.

Subobjective 2: Determine extent of environmental and human exposures to EDCs, characterize sources and factors influencing these exposures, develop and evaluate risk management strategies to reduce exposures. In order to develop effective risk management strategies, it is important to understand the extent of exposures to endocrine disrupting compounds and factors influencing source-to-exposure-to-dose relationships.

apply molecular indicators of exposure to estrogenic compounds in selected wastewater treatment plants located in ten USEPA Regions

identify differential gene expression following exposure of fathead minnows to environmental androgens and androgen-like compounds

apply molecular indicators of exposu

Description:

This chapter presents the current uses, concepts and anticipated future directions of biomonitoring and bioindicators in the regulatory and research programs of the United States Environmental Protection Agency (USEPA). The chapter provides a historical look on how biomonitoring and bioindicators evolved in the USEPA or its predecessor agencies from the 1960s - 1980s, then describes two current key biomonitoring and bioindicator programs, the USEPA Office of Research and Development's Environmental Monitoring and Assessment Program (EMAP) and USEPA's Office of Water's Biocriteria Program. The remainder of the chapter is organized hierarchially beginning with concepts and monitoring approaches using fish, macroinvertebrates and periphyton assemblages, and functional ecosystem measures. The assemblage approaches are followed by current research and regulatory use of whole organism toxicity testing assessments for measuring contamination in aquatic environments and remediation assessment. The chapter includes existing and proposed activities in the use of real-time biomonitoring to assess biological exposures to contaminants and other environmental changes. A new approach that uses small and large adult whole fish tissue as a bioindicator for assessing potential contaminant exposures to wildlife is presented, followed by a description of new research in molecular approaches to biomonitoring and bioindicators through measures of gene expression, use of microarrays and measures of genetic diversity.

Record Details:

Record Type:DOCUMENT( BOOK CHAPTER)
Product Published Date:06/01/2003
Record Last Revised:11/16/2005
OMB Category:Other
Record ID: 65965