Office of Research and Development Publications

A SCIENTIFIC AND TECHNOLOGICAL FRAMEWORK FOR EVALUATING COMPARATIVE RISK IN ECOLOGICAL RISK ASSESSMENTS

Citation:

Johnston, J M. A SCIENTIFIC AND TECHNOLOGICAL FRAMEWORK FOR EVALUATING COMPARATIVE RISK IN ECOLOGICAL RISK ASSESSMENTS. Modelling of Environmental Chemical Exposure and Risk. Kluwer Academic Publishers, Hingham, MA, , 133-150, (2001).

Impact/Purpose:

This research project sets out to design and conduct an assessment of the long-term ecological consequences of alternative management choices. As the first project to be done at this scale using predictive ecological endpoints, we will seek to identify the appropriate components of such an analysis. We will use experience gained in the conduct of this BASE analysis to identify key research and data needs for address, to estimate timing, resource needs, etc., for future analyses. We will extend this analysis beyond previous and ongoing studies in two ways: by incorporating biological endpoints, primarily properties of fish communities, and by introducing the concept of sustainability of ecological state under future scenarios contrasted with the present state of those same ecological resources. Requirements that are identified during the course of this study will permit the recommendation of specific capabilities that should be incorporated in a general modeling system currently under development to support BASE and other environmental assessments. Finally, the analysis is intended to be of value for establishing environmental management choices that will be beneficial and those that would be detrimental to the sustainability of ecological resources of the Albemarle-Pamlico Basin.

Description:

There are significant scientific and technological challenges to managing natural resources. Data needs are cited as an obvious limitation, but there exist more fundamental scientific issues. What is still needed is a method of comparing management strategies based on projected impacts to ecosystem health. Ecological risk assessment is a field in its infancy, and its focus has been primarily toxic hazards (i.e. pesticides) to aquatic endpoints. Expanding on these achievements with the expression of sustainable, edible fisheries in an entire estuary as an assessment endpoint, and with greater complexity than a single species or species-by-species approach, is a first challenge. The extension of the scope of a risk assessment to include non-chemical stresses, such as land use change and nitrogen enrichment, is requisite to managing resources given the signifi- cance of how these disturbances alter hydrologic balances, habitat characteristics, and even the structure of ecological communities. The separation of intrinsic variability in the status of the fisheries from those variations that result from anthropogenic sources of disturbance is also a challenge that is not trivial. Management alternatives are thus evaluated based on the costs of remediation and related economic and societal issues and the projected changes in resource quality. Ultimately, terrestrial endpoints require attention as well. As an interdisciplinary application of such fields as ecology, biology, environmental management, toxicology, hydrology, and economics, ecological risk assessment requires a much broader, more comprehensive scope and a conceptual framework that synthesises the contributions of the supporting science and management. These challenges combine with the practical, technological challenges of how to conduct a risk assessment. Central to the goal of performing analyses of various resource management scenarios is the need for a computer-based problem solving environment that automates many of the associated tasks: data gathering and manipulation, integration of statistical, empirical, and mathematical simulation modelling and analysis tech- niques, and the accommodation of model inter-comparisons within a common framework. Because there are no rules as such for performing an ecological risk assessment, the guidelines that exist as expert knowledge could also be codified and made available within such a framework. It is important to understand that such a framework is much more than simply a collection of assorted tools in a software toolkit. It is the implementation of the science for performing comparative ecological risk. Advances in ecological risk assessment are of a scientific as well as technological nature, and any hoped for state-of-the-art applications of the field must eventually give attention to both areas of need. I present the ongoing development of both a scientific conceptual model for performing comparative risk and a software framework to meet these needs.

Record Details:

Record Type:DOCUMENT( BOOK CHAPTER)
Product Published Date:01/15/2001
Record Last Revised:12/22/2005
Record ID: 65956