Science Inventory

DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

Citation:

Miller, W. L., M. A. Moran, W. Sheldon, R G. Zepp, AND S. P. Opsahl. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS. LIMNOLOGY AND OCEANOGRAPHY 47(2):343-352, (2002).

Impact/Purpose:

The overall objective of this task is to develop quantitative relationships for assessing the vulnerability of aquatic resources to global change. The task will contribute experimental and modeling tools for assessments of the interactions of global climate and UV changes with coral reefs and selected watersheds and estuaries in the U.S. These activities are contributing primarily to two APGs in the ecosystems component of the Global Change Research Multiyear Plan: the 2006 APG (APG 3) on building the capacity to assess global change impacts on coastal aquatic ecosystems, including coral reefs and estuaries and the 2004 APG (APG 2) on building capacity to assess and respond to global change impacts on selected watersheds. One major task objective is to assess interactions of global warming and UV exposure that are contributing to the observed coral bleaching and disease. Our lab is working with scientists at the NHEERL Gulf Ecology Lab to characterize UV exposure and effects at several coral reef sites. Other research in this task is examining the interactions between UV-induced breakdown of refractory organic matter in estuaries and coastal areas that enhance UV penetration into the water and concurrently form biologically-labile nitrogen-, phosphorus- and carbon-containing substances that stimulate productivity and microbial activity. This task also involves research in central Brazil that is part of the Large Scale Biosphere Atmosphere Experiment (LBA). The objectives of this project are to assess the impacts of land use and climatic changes on soil nutrient cycles and microbiota, trace gas exchange and water quality in the Brazilian cerrado. This work involves a close collaboration between EPA and a group of scientists from the Department of Ecology, University of Brasilia, Brazil. Other objectives of this task are to assess the interactions of land use and climate changes with the ecological functioning of streams in watersheds of the Piedmont region of the southestern U.S.

Description:

Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, and depth-related changes in spectral irradiance. Apparent quantum yield spectra were calculated for two coastal environments from the southeastern U.S. using post-irradiation bacterial respiration as a measure of total labile photoproduct formation and a cut-off filter method to model spectral dependence. As has been the case for previously studied classes of DOM photoproducts (i.e., dissolved inorganic carbon, CO, and H2O2), UV-B irradiance was significantly more efficient at forming labile photoproducts (i.e., compounds readily assimilated by marine bacterioplankton) than UV-A and visible irradiance. Calculations of DOM photoproduct formation in southeastern U.S. coastal surface waters indicate a formation ratio for biologically labile photoproducts:CO of 13:1. The slope of a natural log plot of the apparent quantum yield spectrum obtained for biologically labile photoproducts was similar to that for CO (0.028 nm-1 vs. 0.034 nm-1). Modeled kinetic rates therefore indicate that the production ratio of these photoproduct classes is approximately maintained despite variations in the solar spectrum that occur with depth in a water column or distance from shore. Application of the apparent quantum yield to coastal regions worldwide predicts an annual formation rate of biologically labile photoproducts in coastal waters of 206 x 1012 g C.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:03/01/2002
Record Last Revised:12/22/2005
Record ID: 65447