Science Inventory

DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY HEPATITIS E VIRUS IN WATER

Citation:

Grimm, A C. AND G S. Fout. DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY HEPATITIS E VIRUS IN WATER. JOURNAL OF VIROLOGICAL METHODS 101(2):175-188, (2002).

Impact/Purpose:

Overarching Objectives and Links to Multi-Year Planning

This task directly supports the 2003 Drinking Water Research Program Multi-Year Plan's long term goal 1 for "regulated contaminants" and long term goal 2 for "unregulated contaminants and innovative approaches" under GRPA Goal 2 (Clean and Safe Water). The overarching objective is to provide the Office of Water, Agency risk assessors and managers, academics, the scientific community, state regulators, water industry and industry spokes-groups the methods they need to measure occurrence of waterborne viral pathogens. The methods developed will improve the quality of risk-based assessments and tools used by the Agency to set regulations, policies and priorities for protecting human health and will allow the Agency to assure the public that the appropriate methods are being used to demonstrate that drinking water is safe from pathogenic agents.

Specific Subtask Objectives:

o Evaluate techniques for enhancement of growth of human enteric viruses in support of CCL #2 and #3 and for use in the UCMR (Subtask A; to be completed by 9/05 in support of LTG 2)

o Develop a multiplex RT-PCR method that incorporates internal controls for use in the UCMR (Subtask B; completed 9/03 in support of LTG 2)

o Develop and evaluate new molecular technologies for use in the UCMR. Included will be real-time RT-PCR methods for Norwalk virus and astroviruses, and integrated cell culture/molecular procedures for detection of infectious viruses (Subtask B; to be completed by 9/05 in support of LTG 2)

Description:

Hepatitis E virus (HEV) causes an infectious form of hepatitis associated with contaminated water. By analyzing the sequence of several HEV isolates, a reverse transciption-polymerase chain reaction method was developed and optimized that should be able to identify all of the known HEV strains. When tested under laboratory conditions, this method was able to detect low levels of five diverse HEV variants. In addition, internal controls were constructed so that any PCR inhibition could be detected. Finally, virus-spiked environmental water samples were successfully analyzed with these assays.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:01/01/2002
Record Last Revised:12/22/2005
Record ID: 64766