Science Inventory

SIMULATION OF DNAPL DISTRIBUTION RESULTING FROM MULTIPLE SOURCES

Citation:

Fishman, M., J. Guarnaccia, C G. Enfield*, AND A L. Wood*. SIMULATION OF DNAPL DISTRIBUTION RESULTING FROM MULTIPLE SOURCES. Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 22-25, 2000.

Description:

A three-dimensional and three-phase (water, NAPL and gas) numerical simulator, called NAPL, was employed to study the interaction between DNAPL (PCE) plumes in a variably saturated porous media. Several model verification tests have been performed, including a series of 2-D laboratory experiments invoolving the migration of PCE through a variably saturated, homogeneous sand. A comparison of the experimental data to the model results illustrates the effect and importance of fluid entrapment and saturation hysteresis.

The NAPL model was used to simulate a 3-D multi point PCE source release within a contained test cell at the Groundwater Remediation Field Laboratory (GRFL) in Dover, Delaware. In this experiment, the migration of PCE in the unsaturated and saturated zones, under various infiltration scenarios, was simulated. The modeling of multiple injection points in a homogeneous aquifer shows that the ultimate distribution of PCE depends on the injection point locations and the time-varying release rates, and the depth to the water table. In general, an intermittent, slow, injection rate caused narrow, deeply penetrating DNAPL plumes. On the other hand, higher injection rates resulted in a wider horizontal distribution and more interaction between heighboring plumes, thus creating non-symmetric distributions and an increase in the flow rate and depth of penetration.

Record Details:

Record Type:DOCUMENT( PRESENTATION/ PAPER)
Product Published Date:05/25/2000
Record Last Revised:06/21/2006
Record ID: 63699