Office of Research and Development Publications

SUBSURFACE RESIDENCE TIMES AS AN ALGORITHM FOR AQUIFER SENSITIVITY MAPPING: TESTING THE CONCEPT WITH ANALYTIC ELEMENT GROUND WATER MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

Citation:

Kraemer, S R. SUBSURFACE RESIDENCE TIMES AS AN ALGORITHM FOR AQUIFER SENSITIVITY MAPPING: TESTING THE CONCEPT WITH ANALYTIC ELEMENT GROUND WATER MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA. Presented at 2002 American Geophysical Union Spring Meeting, Washington, DC, May 28-31, 2002.

Impact/Purpose:

This research project sets out to design and conduct an assessment of the long-term ecological consequences of alternative watershed management choices. As the first project to be done at this scale using predictive ecological endpoints, we will seek to identify the appropriate components of such an analysis. We will use experience gained in the conduct of this analysis to identify key research and data needs for future analyses. We will extend this analysis beyond previous and ongoing studies in two ways: by incorporating biological endpoints, primarily properties of fish communities, and by introducing the concept of sustainability of ecological state under future scenarios contrasted with the present state of those same ecological resources. Requirements that are identified during the course of this study will permit the recommendation of specific capabilities that should be incorporated in a general modeling system currently under development to support environmental assessments. Finally, the analysis is intended to be of value for establishing environmental management choices that will be beneficial and those that would be detrimental to the sustainability of ecological resources. Specific objectives are listed below:

1. Develop watershed-based modeling systems to forecast the effectiveness of alternative management plans in meeting sediment-related, nutrient-related, pathogen-related, and toxics-related criteria and standards, and biologically-based criteria and standards; and

2. Develop and maintain a comprehensive technical support capability that directly links environmental TMDL exposure research activities and products for the EPA Office of Water, EPA Regional Offices, and the States to be used for implementation of policy, regulatory development, remediation, and enforcement needs.

Description:

The objective of this research is to test the utility of simple functions of spatially integrated and temporally averaged ground water residence times in shallow "groundwatersheds" with field observations and more detailed computer simulations. The residence time of water in the subsurface is arguably a surrogate of aquifer sensitivity to contamination --- short contact time in subsurface media may result in reduced contaminant assimilation prior to discharge to a well or stream. Residence time is an established criterion for the delineation of wellhead protection areas. The residence time of water may also have application in assessing the connection between landscape and fair weather loadings of non-point source pollution to streams, such as the drainage of nitrogen-nitrate from agricultural fields as base flow. The field setting of this study includes a hierarchy of catchments in the Contentnea Creek basin (2600 km2) of North Carolina, USA, centered on the intensive coastal plain field study site at Lizzie, NC (1.2+km2), run by the USGS and the NC Dept. of Env. and Nat. Res. of Raleigh, NC. Analytic element models are used to define the advective flow field and regional boundary conditions. The issues of conceptual model complexity are explored using the multi-layer object oriented analytic element model Tim, and by embedding the finite difference model MODFLOW within the analytic element model GFLOW (tm). The models are compared to observations of hydraulic head, base flow separations, and aquifer geochemistry and age dating evidence. The resulting insights are captured and mapped across the basin as zones of average aquifer residence time using the ArcView (tm) GIS tools. Preliminary results and conclusions will be presented.

Record Details:

Record Type:DOCUMENT( PRESENTATION/ ABSTRACT)
Product Published Date:05/28/2002
Record Last Revised:06/06/2005
Record ID: 62053