Science Inventory

APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

Citation:

Spiegel, R., M. Fatmi, AND K. Kunz. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/J-85/363 (NTIS PB86176799).

Description:

A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the capability to calculate specific absorption rates (SARs) at higher frequencies and provides greater spatial resolution. The method is illustrated by the calculation of the time-domain and frequency-domain SAR responses at selected locations in the chest. The model for the human body is comprised of rectangular cells with dimensions of 4 x 4 x 6cm and dielectric properties that simulate average tissue (2/3 muscle). Additionally, the upper torso (chest) is configured by both homogeneous and inhomogeneous models in which this region is subdivided into 20,736 cells with dimensions of 11x1x1 cm.

Record Details:

Record Type:DOCUMENT( REPORT )
Product Published Date:05/24/2002
Record Last Revised:04/16/2004
Record ID: 51404