Science Inventory

EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS: VOLUME 1. TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

Citation:

Cetegen, B., J. Clough, G. England, T. Johnson, Y. Kwan, AND R. Payne. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS: VOLUME 1. TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/7-89/007.

Description:

The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents for SO2 control, by modifying the design and operation of the sorbent jets. NOx emissions could be reduced by 50-60% (to 300-500 ppm) without external ports by using two secondary air channels in the burner throat, and by modifying the coal nozzle. A baffle in the outer secondary air channel also appears necessary where high secondary air velocities cannot be avoided. Sorbent testing confirmed that jet design/operation must focus on protecting the sorbent from seeing high peak temperatures: a peak temperature of 1230-1290 C gave optimum sorbent performance. SO2 removals of 80% at Ca/S = 2 were achieved with a pressure-hydrated lime at this temperature. Jet design to increase sorbent heating rate might also have a secondary effect in improving performance.

Record Details:

Record Type:DOCUMENT( REPORT )
Product Published Date:05/24/2002
Record Last Revised:04/16/2004
Record ID: 34118