Science Inventory

Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources

Citation:

Pouliot, G., V. Rao, J. McCarty, AND A. Soja. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION. Air & Waste Management Association, Pittsburgh, PA, 67(5):613-622, (2017).

Impact/Purpose:

The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

Description:

Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM2.5. This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM2.5. For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM2.5. This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA’s Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html).Implications: Estimates of crop residue burning and rangeland burning emissions can be improved by using satellite detections. Local information is helpful in distinguishing crop residue and rangeland burning from all other types of fires.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:05/01/2017
Record Last Revised:05/05/2017
OMB Category:Other
Record ID: 336193