Science Inventory

Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

Citation:

Sim, J., J. An, E. Elbeshbishy, R. Hodon, AND H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, 195:31-36, (2015).

Impact/Purpose:

To investigate the use of natural microbial communities in the production of hydrogen peroxide from wastewaters with no additional input of energy, in order to demonstrate the feasibility of harvesting resources from wastes.

Description:

Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36-47%, although cathode over potential fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:11/17/2015
Record Last Revised:12/10/2015
OMB Category:Other
Record ID: 310499