Science Inventory

DEVELOPMENT OF MOLECULAR INDICATORS OF EXPOSURE TO ENDOCRINE DISRUPTING COMPOUNDS, PESTICIDES & OTHER XENOBIOTIC AGENTS

Impact/Purpose:

The indeterminate condition of exposure indicator research stands to change markedly with the ability to connect molecular biological technologies with cellular or tissue effects and outcomes. Three focal areas of ecological research aim to develop a sequence of approaches where "the earliest recognizable signatures of exposure" (i.e., unique patterns of up- and down-regulated genes and proteins) are identified for numerous stressors, demonstrable in case studies and incorporated into Agency, State and Regional studies supported by EMAP and other programs.

Area 1, Computational Toxicology Research: Exposure assessment has historically been based on use of chemical analysis data to generate exposure models. While biological activity of chemicals has been recognized to be important for exposure risk assessments, measurement of such activity has been limited to whole organism toxicity tests. Use of molecular approaches will:

improve extrapolation between components of source-to-outcome continuum (source , exposure , dose , effect , outcome)

Using a systems modeling approach, gene and protein expression data, in small fish models (fathead minnow and zebrafish), will be integrated with metabolomic and histopathological data. This will assist in prediction of environmental transformation and chemical effects based on structural characteristics, and enhance quantitative risk assessments, including areas of uncertainty such as a basis for extrapolation of effects of endocrine disrupting chemicals, interspecies extrapolation, complex chemical mixtures and dose-response assessment.

Area 2, Ecological Research-Environmental Diagnostics: Development of molecular diagnostic indicators contributes to several of the GPRA Diagnostic Research Goals. Methods will employ DNA microarray technology and expression proteomics, focusing on species of relevance to aquatic ecosystem risk assessment. Significantly, these diagnostic indicators will open the door to understanding subcellular interactions resulting from exposure to complex chemical mixtures.

define relationship between genetic disposition of populations and degree/specificity of stressor-specific gene transcriptional response in aquatic organisms (fish and invertebrates)

identify of chemical mixture induced transcriptional "patterns" using microarrays and hyperspectral scanning - via collaboration with DOE Sandia National Labs

apply molecular indicators to watershed level stressor study, including pilot studies with targeted pesticides and toxins indicators

develop molecular indicators of exposure for invertebrates (Daphnia, Lumbriculus, Chironomus)

Area 3, Exposure Research in Endocrine Disruptors:

Subobjective 1: Develop exposure methods, measurement protocols, and models for assessment of risk management practices of endocrine disrupting compounds. As risk management approaches are identified and developed, there will be a need to identify, adapt and develop bioassay screening tools and other analytical methods to assess their efficacy. Measurements research will be performed to define management needs. This effort will entail cross-lab participation from NRMRL, NERL and NHEERL.

Subobjective 2: Determine extent of environmental and human exposures to EDCs, characterize sources and factors influencing these exposures, develop and evaluate risk management strategies to reduce exposures. In order to develop effective risk management strategies, it is important to understand the extent of exposures to endocrine disrupting compounds and factors influencing source-to-exposure-to-dose relationships.

apply molecular indicators of exposure to estrogenic compounds in selected wastewater treatment plants located in ten USEPA Regions

identify differential gene expression following exposure of fathead minnows to environmental androgens and androgen-like compounds

apply molecular indicators of exposu

Description:

A great deal of uncertainty exists regarding the extent to which humans and wildlife are exposed to chemical stressors in aquatic resources. Scientific literature is replete with studies of xenobiotics in surface waters, including a recent national USGS survey of endocrine disrupting chemicals; however, biological significance of these chemical data is in question since chemical bioavailability is largely unknown and biological events may be induced by undetected chemicals and varying ecological conditions (i.e., total nitrogen and phosphorus). Whole effluent toxicity data exist, but do not answer specific exposure questions that may support detailed ecological risk assessments. Interpretation of data arising from exposure to complex chemical mixtures is even more problematic. A solution to these problems is development of sensitive and specific cellular indicators of exposure in aquatic organisms. The potential for development is enhanced by emergent resources in molecular biology and associated technologies, most notably DNA microarrays consisting of transcriptionally relevant nucleic acid sequences that can be used to detect altered gene expression in cells, tissues and various life stages of organisms exposed to chemical and natural stressors.

Ecological investigation in the present Task have been partitioned into three focal research areas: (1) Core Computational Toxicology research, (2) Ecological research and (3) Molecular Diagnostics and endocrine disrupting compounds. Three areas of core and applied research will be consequential on development of molecular indicators diagnostic for exposure to specific xenobiotic, natural stressors, and complex mixtures thereof, in freshwater fish and invertebrates. Research is focused on Agency's long-established aquatic toxicological organism, the fathead minnow (Pimephales promelas). Although numerous molecular biological approaches are exploited, foremost methods leading to development of molecular indicators are assembly and manufacture of DNA microarrays containing transcriptionally relevant gene sequences of fathead minnow, and the detection of novel or differentially expressed proteins by means of 2-D polyacrylamide gel electrophoresis followed by mass spectrometry. An extensive effort in 'gene discovery' research with the fathead minnow has been the primary emphasis of respective research areas, since high-throughput genome sequencing efforts-such as those in human and mouse-have not been directed toward organisms used in aquatic toxicity testing such as fathead minnows. Gene discovery research is fundamental to identified research areas, and is expected to be augmented by high-throughput cDNA sequencing data arising through a collaborative effort with the Dept. of Energy, Joint Genome Institute. Also, proteins induced to differential expression by chemical exposure will be used in ‘reverse genetics' approach wherein knowledge of protein sequence will make possible the investigation of gene function and associated mechanistic biology.

Following development and validation, fathead minnow microarrays, along with critical indicators identified by expression proteomics, will enable extensive molecular profiling studies, the hypotheses of which are that unique patterns of gene expression will be detected in targeted tissues of fathead minnows exposed to individual chemical stressors. Identification of unique, differentially expressed genes will then provide the basis for stressor-specific, quantitative molecular indicators, theory and methods that can be readily transferred to investigators within USEPA Regions, Tribes and states.

Ultimately, proposed research will provide environmental science and risk assessment communities with advanced molecular biological indicator methods, complete with validation studies and guidance for their application. Early success has been achieved in the transfer of molecular indicator technologies to USEPA Region 9 and State of California.

Record Details:

Record Type:PROJECT
Start Date:10/01/2000
Projected Completion Date:09/01/2006
OMB Category:Other
Record ID: 29221