Science Inventory

Evaluating an alternative method for rapid urinary creatinine determination

Citation:

Andersen, E., J. Sobus, M. Strynar, J. Pleil, AND S. Nakayama. Evaluating an alternative method for rapid urinary creatinine determination. CLINICAL CHEMISTRY. American Association of Clinical Chemistry, Washington, DC, 77(18):1114-1123, (2014).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL′s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA′s mission to protect human health and the environment. HEASD′s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA′s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

Description:

Creatinine (CR) is an endogenously-produced chemical routinely assayed in urine specimens to assess kidney function, sample dilution. The industry-standard method for CR determination, known as the kinetic Jaffe (KJ) method, relies on an exponential rate of a colorimetric change, and can therefore require automated processing equipment for moderate-to high-throughput analysis (hundreds to thousands of samples per day). This study evaluates an alternative colorimetric method, the "plateau Jaffe" (PJ) method, which utilizes the chemistry of the KJ method, a commercially available kit, and a multipoint calibration curve. This method is amenable to moderate-throughput sample analysis and does not require automated processing equipment. Thirty-two spot urine samples from healthy adult volunteers were analyzed for creatinine concentration (CRc) using the KJ and PJ methods. Samples weere also analyzed using a liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS) method, which acted as an analytical control. Replicate measurements of spot samples (natural log-transformed values) were used to estimate method precision, and linear regression models were used to evaluate method accuracy (LC-TOF/MS measurements were considered the analytical benchmark). Measurement precision was comparable across all three methods, with coefficient of variation estimates ranging from 3 to 6%. Regression models generally showed good agreement across methods with R2 estimates ranging from .996 to.998, slope estimates ranging from .944 to .986, and y-intercept estimates ranging from 0.111 to 0.303. Minor bias (between 2 and 16%) was observed across methods at the tails of the measurement distributions. The provided regression equations can be used to adjust for this bias and to improve CR measurement comparisons across studies employing different methods. Considering these results, the PJ method is a suitable alternative to the industry standard KJ method for urinary CRc determination. It can be implemented for moderate-throughput sample analysis using modest and commonly available lab instrumentation and manual sample preparation techniques.

Record Details:

Record Type:DOCUMENT( JOURNAL/ PEER REVIEWED JOURNAL)
Product Published Date:07/01/2014
Record Last Revised:10/23/2014
OMB Category:Other
Record ID: 290304