Science Inventory

THE ROLE OF PHOTOCHEMICAL PROCESSES FOR PATHOGEN INACTIVATION IN NON-CONVENTIONAL WASTEWATER TREATMENT SYSTEMS

Impact/Purpose:

Several studies have been dedicated to learning more about the impact of photochemical processes on pathogens present in NC-WWT systems. This research attempts to provide a better understanding of the impact of natural and effluent organic matter (NOM, EfOM) in the formation of reactive oxygen species (ROS), such as singlet oxygen, and their potential impacts on pathogen concentrations via indirect photolysis processes.

Description:

This research will lead to a better understanding of sunlight-mediated photochemical processes within NC-WWT systems, their relation to the NOM/EfOM found within such systems and their role in pathogen inactivation. Such results should lead to better estimations on systems performance based on the OM present and inform future designs that take advantage of such oft-ignored indirect photolysis processes.

Potential to Further Environmental/Human Health Protection
Because of the high microbial concentrations present in raw sewage, the removal of pathogens is one of the primary objectives in WWT. Without it, soil, crops and water sources (both ground water and surface water bodies) may become contaminated when coming into contact with untreated water streams, leading to detrimental health and environmental impacts. Thus, it becomes clear that the development, optimization and introduction of decentralized NC-WWT systems that do not rely on high energy, chemical and labor inputs and that are sound socially and environmentally would be highly beneficial to those communities that do not have access to conventional treatment technologies common in more developed regions.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/27/2012
Completion Date:08/26/2015
Record ID: 259710