Science Inventory

ANTHROPOGENIC NUTRIENT INPUT AND ITS INFLUENCE ON PLANT COMPETITIVE OUTCOMES: IMPLICATIONS FOR HABITAT DEGRADATION AND COMMUNITY SHIFTS

Impact/Purpose:

The objectives of this study are to: (1) determine what, if any, positive influences non-native aquatic plants have on the ecosystems they invade; (2) integrate nitrogen and carbon metabolism, and identify molecular markers that respond to nutrient availability as a means of understanding the underlying mechanisms of resource competition between native and non-native plants; and (3) determine what influence the changing atmospheric CO2 concentration will have on nitrogen acquisition and assimilation in key aquatic plant species.

Description:

By taking a multifactorial approach, the study will document complex aquatic plant responses to NPS nutrient contamination, providing fundamental insight into the broader impacts of environmental degradation, its impacts on plant function, and implications for ecosystem services (e.g., nutrient remediation). Finally, armed with a better understanding of how plants physiologically respond to resource fluctuations, simple models will be developed to guide future field project design, allowing appropriate testing of inferences about the ability of plants to remediate nutrient pollution, interspecific plant interactions and resource competition, and the roles these processes play in determining ecosystem health in nature.

Potential to Further Environmental/Human Health Protection
Poor water quality and its obvious impacts on ecosystem structure and function constitute a major environmental and potential human health problem. Although declines and/or compositional shifts in aquatic vegetation have been linked to increases in water column nutrient concentrations, it is unclear how such changes affect the overall capacity of aquatic plant communities to remove toxic compounds (the most common form of which is nitrate) from near-shore waters. Moreover, as global climate changes and atmospheric CO2 levels rise, taxonomic differences in plant physiological responses will necessarily influence nutrient uptake and assimilatory processes, resource competition and overall ecosystem health.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/20/2012
Completion Date:08/19/2015
Record ID: 259708