Science Inventory

ATMOSPHERIC TRANSFORMATION OF DIESEL EMISSIONS

Impact/Purpose:

Diesel exhaust (DE) is an important contributor to air pollution and consists of a complex mixture of hundreds of compounds in either gas or particle form. After emission, DE undergoes chemical and physical transformations, or “aging,” in the atmosphere as well as dispersion and transport. The aging process depends on the environment into which the DE is emitted; the atmosphere contains many compounds, including oxidizing and nitrating radicals, as well as organic and inorganic compounds from sources other than diesel engines. These compounds can influence the chemical composition and toxicity of DE as well as how long its various components remain in the atmosphere. Because of substantial changes in diesel engine technology and after-treatment over the past decade, there is a need to evaluate the newer technologies, including their emissions, the atmospheric processing of their emissions, and the corresponding health effects.

Dr. Barbara Zielinska of the Desert Research Institute in Reno, Nevada, and her colleagues propose studying the effects of photochemical transformations on DE constituents and whether such changes in chemical and physical form would be reflected in changes in toxicity. The investigators’ atmospheric aging experiments would be conducted at the European Photoreactor (EUPHORE) outdoor simulation chamber in Valencia, Spain. Samples would then be shipped to Dr. Zielinska’s laboratory in the United States for detailed chemical analyses and to her collaborator Dr. Jean Clare Seagrave at the Lovelace Respiratory Research Institute in Albuquerque, New Mexico, for toxicologic experiments in rodents.

Description:

The investigators anticipate successfully conducting a complex study to characterize the atmospheric transformations of DE under the influence of sunlight, O3, radicals, and organic compounds. It is hope that this study will present novel results on the atmospheric aging of DE derived from a 2003-model-year light-duty engine under a variety of conditions. The study will include the use of state-of-the-art atmospheric chamber facilities, the use of a realistic set of atmospheric aging conditions, and the analysis of a large number of organic compounds.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:04/01/2005
Completion Date:03/31/2010
Record ID: 258847