Science Inventory

IMPROVED PREDICTION OF THE VERTICAL PROFILE OF ATMOSPHERIC BLACK CARBON: DEVELOPMENT AND EVALUATION OF WRF-CMAQ

Impact/Purpose:

1) Develop condensed chemical and/or meteorological mechanisms suitable for inclusion in 3-dimensional photochemical transport models (CTMs), to simulate cloud production of particulate "brown" carbon (BCcld) from a variety of organic precursors, 2)Identify conditions and precursors that have the largest impact on BCcld for climate (e.g., those for which the vertical distribution is the most sensitive) and for air quality. Conduct CMAQsimulations for the continental U.S. using different emissions to simulate a variety of control strategies to estimate the controllable fraction of BCcld and assign relative importance to individual source sectors. 3) Incorporate findings into the coupled Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to be released to the public in Fall 2011. Explore the magnitude and change in radiative calculations when the vertical profiles of BC and other SLCFs change as a consequence of more robust representation of cloud processing.

Description:

Advanced model descriptions of cloud processing of atmospheric pollutants will improve predicted vertical profiles of optically active particulate carbon (e.g., black carbon (Be) and other short lived climate forcers (SLCFs) such as "brown" carbon). More accurate prediction of vertical profiles will improve raditative transfer calculations (because scattering is altitude dependent) and better describe long-range pollution transport. Effective control strategies for climate and air quality can be designed using models, often used in regulatory applications (e.g., CMAQ) when they better represent the vertical structure of atmospheric pollution.

URLs/Downloads:

2012 Progress Report

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:09/01/2011
Completion Date:08/31/2014
Record ID: 252896