Science Inventory

COMBINING CLIMATE MODEL PREDICTIONS, HYDROLOGICAL MODELING, AND ECOLOGICAL NICHE MODELING ALGORITHMS TO PREDICT THE IMPACTS OF CLIMATE CHANGE ON AQUATIC BIODIVERSITY

Impact/Purpose:

The primary objective of this research is to predict the impacts of climate change on aquatic biodiversity in United States river drainages. Global climate models will be integrated with a landscape hydrologic model and an ecological niche modeling algorithm to test three general hypotheses: 1) Climate data, when integrated with landscape hydrologic models, can accurately predict variation in current and future flow regimes in United States river drainages; 2) Ecological niche modeling algorithms, when used in conjunction with hydrologic model outputs and species distribution data, can accurately predict current and future distributions of aquatic taxa; and 3) Predicted changes in climate will differentially impact aquatic taxa, with some species experiencing decreases in future habitat availability while other species experience increases in the amount of available habitat.

Description:

The results of this research will provide a broad taxonomic and regional assessment of the impacts of climate change on aquatic species in the United States by producing predictions of current and future habitat quality for aquatic taxa based on multiple climate change scenarios. The results will address key questions detailed in the program announcement including: 1) What are the potential impacts of climate change on streamflow regimes in different regions of the United States, and how will these changes affect aquatic ecosystems; and 2) How will climate change influence the availability of suitable aquatic habitat for vulnerable species?

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/01/2009
Completion Date:07/31/2011
Record ID: 251001