Science Inventory

NOVEL 'GREENER' ROUTES TO HALOGEN-FREE FLAME RETARDANT MATERIALS

Impact/Purpose:

The primary objective for Phase II is to better understand the flame retardant behavior of polyphenols synthesized in Phase I, improve their performance and scale-up the synthesis to larger volumes. The polyphenols will also be incorporated into commercial plastics and their FR behavior will be evaluated.

Description:

The increased use of polymeric materials in numerous applications over the past decade has prompted a surge in the need for additives in the polymer industry. Flame retardant (FR) materials are additives that are used to control or reduce/eliminate the risk of fire in flammable polymers. Currently, some of most commonly used FR additives are based on halogenated compounds. Halogenated FR are inexpensive, effective in reducing the flammability of products and do not adversely affect the processability of polymers. However they are toxic and are slowly released from the polymeric matrix into the environment, making their way up the food chain and eventually accumulating in humans. Some halogenated FRs are known to cause damage to immune, reproductive, nervous, and endocrine systems. Their use has been regulated banned/regulated in Europe and in certain states in the U.S. There is a tremendous need for developing alternative FR materials, preferably from renewable sources, using non-toxic approaches. This research project will use methodologies that are in accordance to the 12 principles of green chemistry and benefit the three pillars of sustainability – people, prosperity and planet. In phase I, we were able to successfully synthesize polyphenolic FR based on cardanol (renewable resource) using benign routes. The polyphenols were thermally characterized and exhibited good FR properties (low heat release capacities and good char forming capability).

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:08/15/2011
Completion Date:08/14/2013
Record ID: 249473