Science Inventory

IMPROVING CHEMICAL TRANSPORT MODEL PREDICTIONS OF ORGANIC AEROSOL: MEASUREMENT AND SIMULATION OF SEMIVOLATILE ORGANIC EMISSIONS FROM MOBILE AND NON-MOBILE SOURCES

Impact/Purpose:

The core hypothesis underlying this project is that volatility based representations of primary organic aerosol emissions data will improve predictions of chemical transport models. Specific project objectives include: to investigate methodologies for routine measurement of the volatility distribution of emissions of low-volatility organics from combustion systems; to measure emission factors for, and volatility distributions of, low-volatility organics emitted by on-road and non-road mobile sources; to develop techniques to efficiently update emission inventories for use with the volatility basis set approach using the emissions data collected by this project and other studies; and to conduct chemical transport model simulations with the updated inventories for the Eastern United States and California and to compare model predictions with ambient organic aerosol data.

Description:

Organic material contributes a significant fraction of PM2.5 mass across all regions of the United States, but state-of-the-art chemical transport models often substantially underpredict measured organic aerosol concentrations. Recent revisions to these models that account for gas-particle partitioning of primary emissions and secondary organic aerosol production from all low-volatility organics improve model performance, but full implementation of these ideas is hampered by critical data gaps. This proposal addresses one of those gaps, namely volatility-based emissions data that are needed to develop inventories for the next generation of chemical transport models.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:04/01/2010
Completion Date:03/31/2013
Record ID: 249347