Science Inventory

RESEARCH AND DEMONSTRATION OF ELECTROSPUN NANOFIBER FILTERS: MULTIFUNCTIONAL, CHEMICALLY ACTIVE FILTRATION TECHNOLOGIES FOR SMALL-SCALE WATER TREATMENT SYSTEMS

Impact/Purpose:

This research and demonstration plan will fabricate multi-layered nanofiber mats via electrospinning and optimize their performance as chemically active filtration technologies. This work will optimize the reactivity of (i) maganagese-doped titanium dioxide (Mn-TiO2) nanofibers for use as visible-light photocatalysts, (ii) aluminum-doped iron oxide (Al-Fe2O3) nanofibers as heavy metal sorbents, and (iii) carbon nanofibers as sorbents for organic microsconstituents. Once optimized, these highly reactive building blocks will be integrated into a single filter unit with sequential yet spatially resolved layers of each nanomaterial, imparting true multi-functionality and the ability to perform several treatment operations simultaneously over small spatial scales. We hypothesize that nanofibers will exhibit superior activity relative to traditional reactive media: the ability to tune nanofiber properties during electrospinning enables optimization of their reactivity (e.g., surface area) and sustainability (e.g., tailoring Mn levels in TiO2 to enhance visible light photoactivity). Demonstration objectives will highlight the synergistic performance characteristics of Mn-TiO2/Al-Fe2O3/carbon nanofiber mats when applied to source waters representative of rural systems (e.g. contaminated by arsenic, agrochemicals and pharmaceuticals).

Description:

This work will provide the production framework for next-generation treatment technologies capable of targeting diverse chemical pollutants over a range of water chemistries and application scales. Tangible outcomes include a wealth of demonstration data and standard operating procedures that will help better inform communities deciding whether technology adoption is appropriate for their water supply. This work will also spur growth in applications of electrospun nanofibers, an innovative class of nanomaterials yet to be fully integrated into water treatment. Regional partnerships with three water suppliers in Iowa provide a unique pathway toward the continued development of nanofiber filter technologies.

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:12/01/2011
Completion Date:11/30/2015
Record ID: 249212