Science Inventory

HIGH-THROUGHPUT CELLULAR ASSAYS FOR MODELING TOXICITY IN THE FISH REPRODUCTIVE SYSTEM

Impact/Purpose:

Our hypotheses are that in vitro assays can provide valid estimates of specific model parameters used in computational models of fish reproduction. These models combined with toxicokinetic modeling can be used to convert in vitro estimates of contaminant effects on endocrine function to predictions on reproductive success in fish for a given environmental exposure.

Description:

The most important benefit of this project is the experimental evaluation of all essential steps in the development and testing of adverse outcome pathways (AOP) for a diverse set of reproductive and non-reproductive toxicants. In contrast to human testing and the toxicity pathway concept, testing of the ecological counterpart is much further behind. However, in vitro testing using rainbow trout cells has a long history and coupled with the superior mechanistic understanding of physiological processes controlling dosimetry, provides an excellent model system for studying implementation of the AOP process. Thus, our results will be of benefit to future studies with other ecologically important models by providing guidance on important questions such as: When considering the pituitary- gonadliver (PGL) axis, to what extent can immortalized cell lines be used and must you control for gender and maturational stage specificity? Are multi- tissue differences in toxicant sensitivity significant enough to warrant HTS of each PGL tissue or could equivalent predictions (environmental exposure scenarios) be obtained with one or two tissues used for in vitro testing?

Record Details:

Record Type:PROJECT( ABSTRACT )
Start Date:09/01/2012
Completion Date:08/31/2015
Record ID: 248885