Science Inventory

Chapter 5. Pesticide Regulations: Exposure-dose modeling from FIFRA to FQPA

Citation:

KNAAK, J. B., YU-MEI TAN, AND C. C. DARY. Chapter 5. Pesticide Regulations: Exposure-dose modeling from FIFRA to FQPA. 1st, Chapter 5, E. Hodgson (ed.), Toxicology and Human Environments. Elsevier Ltd., Great Britain, Uk, 112:117-162, (2012).

Impact/Purpose:

The National Exposure Research Laboratory′s (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA′s mission to protect human health and the environment. HEASD′s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA′s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

Description:

The federal laws and regulations governing the registration and use of pesticides in the United States under the Federal Insecticide, Fungicide, and Rodenticide Act are published in the Federal Register, while state laws such as California are published in the California Food and Agricultural Code, Divisions 6, 7, and 13. Up until the passage of the Food Quality Protection Act (FQPA of 1996), federal and state regulations pertaining to the registration and use of pesticides were in most cases identical except for the fact that food tolerances were enforced but not set at the state level. The California Department of Pesticide Regulation's Worker Health and Safety Program continues to monitor worker exposure to pesticides and report illnesses among workers associated with pesticide exposure. Under FQPA, the United States Environmental Protection Agency (EPA) has taken a leadership role in the development of probabilistic pesticide exposure models (i.e., DEEM, SHEDS, etc.) using pesticide application, human activity, and exposure databases (i.e., CPPAES, CHAD, CSFII, FCID, NHANES, and NHEXAS). A physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling framework has been established by EPA to assess cumulative risk of dose and injury to infants and children to organophosphorus, carbamate (NMC), and pyrethroid insecticides from aggregate sources and routes. Probabilistic models are being linked to PBPK/PD models to improve risk assessments.

Record Details:

Record Type:DOCUMENT( BOOK CHAPTER)
Product Published Date:09/28/2012
Record Last Revised:11/08/2012
OMB Category:Other
Record ID: 241444